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Preface

Acoustics was originally the study of small pressure waves in air which can be detected by the human

ear: sound. The scope of acoustics has been extended to higher and lower frequencies: ultrasound and

infrasound. Structural vibrations are now often included in acoustics. Also the perception of sound

is an area of acoustical research. In our present introduction we will limit ourselves to the original

definition and to the propagation in fluids like air and water. In such a case acoustics is a part of fluid

dynamics.

A major problem of fluid dynamics is that the equations of motion are non-linear. This implies that an

exact general solution of these equations is not available. Acoustics is a first order approximation in

which non-linear effects are neglected. In classical acoustics the generation of sound is considered to

be a boundary condition problem. The sound generated by a loudspeaker or any unsteady movement

of a solid boundary are examples of the sound generation mechanism in classical acoustics. In the

present course we will also include some aero-acoustic processes of sound generation: heat transfer

and turbulence. Turbulence is a chaotic motion dominated by non-linear convective forces. An accur-

ate deterministic description of turbulent flows is not available. The key of the famous Lighthill theory

of sound generation by turbulence is the use of an integral equation which is much more suitable to

introducing approximations than a differential equation. We therefore discuss in some detail the use

of Green’s functions to derive integral equations.

Next to Lighthill’s approach which leads to order of magnitude estimate of sound production by

complex flows we also describe briefly the theory of vortex sound which can be used when a simple

deterministic description is available for a flow at low Mach numbers (for velocities small compared

to the speed of sound).

In contrast to most textbooks we have put more emphasis on duct acoustics, both in relation to its

generation by pipe flows, and with respect to more advanced theory on modal expansions and approx-

imation methods. This particular choice is motivated by industrial applications like aircraft engines

and gas transport systems.

This course is inspired by the book of Dowling and Ffowcs Williams: “Sound and Sources of Sound”

[52]. We also used the lecture notes of the course on aero- and hydroacoustics given by Crighton,

Dowling, Ffowcs Williams, Heckl and Leppington [42].

Among the literature on acoustics the book of Pierce [178] is an excellent introduction available for a

low price from the Acoustical Society of America.

In the preparation of the lecture notes we consulted various books which cover different aspects of the

problem [14, 16, 18, 37, 48, 70, 87, 93, 99, 113, 123, 148, 163, 171, 174, 220, 234].



1 Some fluid dynamics

1.1 Conservation laws and constitutive equations

In fluid dynamics we consider gas and liquids as a continuum: we assume that we can define a “fluid

particle” which is large compared to molecular scales but small compared to the other length scales

in our problem. We can describe the fluid motion by using the laws of mass, momentum and energy

conservation applied to an elementary fluid particle. The integral form of the equations of conservation

are given in Appendix A. Applying these laws to an infinitesimal volume element yields the equations

in differential form, which assumes that the fluid properties are continuous and that derivatives exist.

In some cases we will therefore use the more general integral laws. A conservation law in differential

form may be written as the time derivative of the density of a property plus the divergence of the flux

of this property being equal to the source per unit volume of this property in the particle [14, 171, 178,

220, 234].

In differential form1 we have for the mass conservation:

∂ρ

∂t
+ ∇·(ρv) = m, or

∂ρ

∂t
+ ∂

∂xi

(ρvi ) = m, (1.1)

where ρ is the fluid density and v = (vi) is the flow velocity at position x = (xi ) and time t . In

principle we will consider situations where mass is conserved and so in general m = 0. The mass

source term m can, however, be used as a representation for a complex process which we do not want

to describe in detail. For example, the action of a pulsating sphere or of heat injection may be well

approximated by such a mass source term.

The momentum conservation law is2:

∂

∂t
(ρv)+ ∇·(P + ρvv) = f + mv, or

∂

∂t
(ρvi )+ ∂

∂x j

(Pj i + ρv jvi ) = fi + mvi , (1.2)

where f = ( fi) is an external force density (like the gravitational force), P = (Pi j ) is minus the

fluid stress tensor, and the issuing mass adds momentum by an amount of mv. In some cases one can

represent the effect of an object like a propeller by a force density f acting on the fluid as a source of

momentum.

When we apply equation (1.1) we obtain3 for (1.2)

ρ
∂v

∂t
+ ∇·(P)+ ρv ·∇v = f , or ρ

∂vi

∂t
+ ∂Pj i

∂x j

+ ρv j

∂vi

∂x j

= fi . (1.3)

1For convenience later we present the basic conservation laws here both in the Gibbs notation and the Cartesian tensor

notation. In the latter, the summation over the values 1,2,3 is understood with respect to all suffixes which appear twice in a

given term. See also the appendix of [14].
2The dyadic product of two vectors v and w is the tensor vw = (viw j ).
3(ρv)t + ∇·(ρvv) = ρtv + ρvt + ∇·(ρv)v + ρ(v·∇)v = [ρt + ∇·(ρv)]v + ρ[vt + (v·∇)v].



2 1 Some fluid dynamics

The fluid stress tensor is related to the pressure p and the viscous stress tensor τ = (τi j ) by the

relationship:

P = p I − τ , or Pi j = p δi j − τi j (1.4)

where I = (δi j ) is the unit tensor, and δi j the Kronecker4 delta. In most of the applications which

we consider in the sequel, we can neglect the viscous stresses. When this is not the case one usually

assumes a relationship between τ and the deformation rate of the fluid element, expressed in the rate-

of-strain tensor ∇v + (∇v)T. It should be noted that a characteristic of a fluid is that it opposes a rate

of deformation, rather than the deformation itself, as in the case of a solid. When this relation is linear

the fluid is described as Newtonian and the resulting momentum conservation equation is referred to

as the Navier-Stokes equation. Even with such a drastic simplification, for compressible fluids as we

consider in acoustics, the equations are quite complicated. A considerable simplification is obtained

when we assume Stokes’ hypothesis, that the fluid is in local thermodynamic equilibrium, so that the

pressure p and the thermodynamic pressure are equivalent. In such a case we have:

τ = η(∇v + (∇v)T)− 2
3
η(∇·v)I, or τi j = η

(
∂vi

∂x j

+ ∂v j

∂xi

)
− 2

3
η

(
∂vk

∂xk

)
δi j (1.5)

where η is the dynamic viscosity. Equation (1.5) is what we call a constitutive equation. The viscosity

η is determined experimentally and depends in general on the temperature T and the pressure p.

At high frequencies the assumption of thermodynamic equilibrium may partially fail resulting in a

dissipation related to volume changes ∇·v which is described with a volume viscosity parameter not

simply related to η [244, 178]. These effects are also significant in the propagation of sound in dusty

gases or in air over large distances [234].

In general (m = 0) the energy conservation law is given by ([14, 171, 234]):

∂

∂t
ρ
(

e + 1
2
v2

)
+ ∇·

(
ρv(e + 1

2
v2)

)
= −∇·q − ∇·(pv)+ ∇·(τ ·v)+ f ·v (1.6)

or
∂

∂t
ρ
(

e + 1
2
v2

)
+ ∂

∂xi

(
ρvi (e + 1

2
v2)

)
= −∂qi

∂xi

− ∂

∂xi

(pvi )+ ∂

∂xi

(τi jv j )+ fivi

where v = |v|, e is the internal energy per unit of mass5 and q is the heat flux due to heat conduction.

A commonly used linear constitutive equation for q is Fourier’s law:

q = −K∇T, (1.7)

where K is the heat conductivity which depends on the pressure p and temperature T . Using the

fundamental law of thermodynamics for a reversible process:

T ds = de + p d(ρ−1) (1.8)

and the equation for mechanical energy, obtained by taking the inner product of the momentum con-

servation law (equation 1.2) with v, we obtain the equation for the entropy6

ρT
(∂s

∂t
+ v ·∇s

)
= −∇·q + τ :∇v, or ρT

(∂s

∂t
+ vi

∂s

∂xi

)
= −∂qi

∂xi

+ τi j

∂v j

∂xi

(1.9)

4 δi j = 1 if i = j, δi j = 0 if i 6= j.
5We call this the specific internal energy, and simply the energy when there is no ambiguity.
6τ :∇v = ∇·(τ ·v)− v·(∇·τ ) since τ is symmetric. Note the convention (∇v)i j = ∂

∂xi
v j .
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where s is the specific entropy or entropy per unit of mass. When heat conduction ∇·q and viscous

dissipation τ :∇v may be neglected, the flow is isentropic7 . This means that the entropy s of a fluid

particle remains constant:

∂s

∂t
+ v ·∇s = 0. (1.10)

Except for regions near walls this approximation will appear to be quite reasonable for most of the

applications considered. If initially the entropy is equal to a constant value s0 throughout the fluid, it

retains this value, and we have simply a flow of uniform and constant entropy s = s0. Note that some

authors define this type of flow isentropic.

Equations (1.1–1.10) still contain more unknowns than equations. As closure condition we introduce

an additional constitutive equation, for example e = e(ρ, s), which implies with equation (1.8):

p = ρ2

(
∂e

∂ρ

)

s

(1.11a)

T =
(
∂e

∂s

)

ρ

(1.11b)

In many cases we will specify an equation of state p = p(ρ, s) rather than e = e(ρ, s). In differential

form this becomes:

dp = c2dρ +
(
∂p

∂s

)

ρ

ds (1.12)

where

c2 =
(
∂p

∂ρ

)

s

(1.13)

is the square of the isentropic speed of sound c. While equation (1.13) is a definition of the thermody-

namic variable c(ρ, s), we will see that c indeed is a measure for the speed of sound. When the same

equation of state c(ρ, s) is valid for the entire flow we say that the fluid is homogeneous. When the

density depends only on the pressure we call the fluid barotropic. When the fluid is homogeneous and

the entropy uniform (ds = 0) we call the flow homentropic.

In the following chapters we will use the heat capacity at constant volume CV which is defined for a

reversible process by

CV =
(
∂e

∂T

)

V

. (1.14)

For an ideal gas the energy e is a function of the temperature only

e(T ) =
∫ T

0

CV dT . (1.15)

For an ideal gas with constant heat capacities we will often use the simplified relation

e = CV T . (1.16)

We call this a perfect gas. Expressions for the pressure p and the speed of sound c will be given in

section 2.3. A justification for some of the simplifications introduced will be given in chapter 2 where

we will consider the order of magnitude of various effects and derive the wave equation. Before going

further we consider some useful approximations and some different notations for the basic equations

given above.

7When heat transfer is negligible, the flow is adiabatic. It is isentropic when it is adiabatic AND reversible.
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1.2 Approximations and alternative forms of the conservation laws for

ideal fluids

Using the definition of convective (or total) derivative8 D/Dt :

D

Dt
= ∂

∂t
+ v ·∇ (1.17)

we can write the mass conservation law (1.1) in the absence of a source (m = 0) in the form:

1

ρ

Dρ

Dt
= −∇·v (1.18)

which clearly shows that the divergence of the velocity ∇·v is a measure for the relative change

in density of a fluid particle. Indeed, the divergence corresponds to the dilatation rate9 of the fluid

particle which vanishes when the density is constant. Hence, if we can neglect density changes, the

mass conservation law reduces to:

∇·v = 0. (1.19)

This is the continuity equation for incompressible fluids. The mass conservation law (1.18) simply

expresses the fact that a fluid particle has a constant mass.

We can write the momentum conservation law for a frictionless fluid (∇·τ negligible) as:

ρ
Dv

Dt
= −∇ p + f . (1.20)

This is Euler’s equation, which corresponds to the second law of Newton (force = mass × accelera-

tion) applied to a specific fluid element with a constant mass. The mass remains constant because we

consider a specific material element. In the absence of friction there are no tangential stresses acting

on the surface of the fluid particle. The motion is induced by the normal stresses (pressure force) −∇ p

and the bulk forces f . The corresponding energy equation for a gas is

Ds

Dt
= 0 (1.10)

which states that the entropy of a particle remains constant. This is a consequence of the fact that heat

conduction is negligible in a frictionless gas flow. The heat and momentum transfer are governed by

the same processes of molecular collisions. The equation of state commonly used in an isentropic flow

is

Dp

Dt
= c2 Dρ

Dt
(1.21)

where c = c(ρ, s), a function of ρ and s, is measured or derived theoretically. Note that in this

equation

c2 =
(
∂p

∂ρ

)

s

(1.13)

8The total derivative D f/Dt of a function f = f (xi , t) and velocity field vi denotes just the ordinary time derivative

d f/dt of f (xi (t), t) for a path xi = xi (t) defined by
.
x i = vi , i.e. moving with a particle along xi = xi (t).

9Dilatation rate = rate of relative volume change.
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is not necessarily a constant.

Under reasonably general conditions [147, p.53] the velocity v, like any vector field, can be split into

an irrotational part and a solenoidal part:

v = ∇ϕ + ∇×9, ∇·9 = 0, or vi = ∂ϕ

∂xi

+ ǫi j k

∂9k

∂x j

,
∂9 j

∂x j

= 0, (1.22)

where ϕ is a scalar velocity potential, 9 = (9i) a vectorial velocity potential or vector stream func-

tion, and ǫi j k the permutation symbol10. A flow described by the scalar potential only (v = ∇ϕ) is

called a potential flow. This is an important concept because the acoustic aspects of the flow are linked

to ϕ. This is seen from the fact that ∇·(∇×9) = 0 so that the compressibility of the flow is described

by the scalar potential ϕ. We have from (1.18):

1

ρ

Dρ

Dt
= −∇2ϕ. (1.23)

From this it is obvious that the flow related to the acoustic field is an irrotational flow. A useful

definition of the acoustic field is therefore: the unsteady component of the irrotational flow field ∇ϕ.

The vector stream function describes the vorticity ω = ∇×v in the flow, because ∇×∇ϕ = 0. Hence

we have11:

ω = ∇×(∇×9) = −∇29. (1.24)

It can be shown that the vorticity ω corresponds to twice the angular velocity � of a fluid particle.

When ρ = ρ(p) is a function of p only, like in a homentropic flow (uniform constant entropy ds = 0),

and in the absence of tangential forces due to the viscosity (τ = 0), we can eliminate the pressure and

density from Euler’s equation by taking the curl of this equation12, to obtain

∂
∂t
ω + v ·∇ω = ω·∇v − ω∇·v + ∇×( f /ρ). (1.25a)

If we apply the mass conservation equation (1.1) we get

ρ

(
∂

∂t
+ v ·∇

) (
ω

ρ

)
= ω·∇v − mω

ρ
+ ∇×

(
f
ρ

)
. (1.25b)

We see that vorticity of the particle is changed either by stretching13 , by a mass source in the presence

of vorticity, or by a non-conservative external force field [233, 110]. In a two-dimensional incom-

pressible flow (∇·v = 0), with velocity v = (vx , vy, 0), the vorticity ω = (0, 0, ωz) is not affected

by stretching because there is no flow component in the direction of ω. Apart from the source terms

−mω/ρ and ∇×( f /ρ), the momentum conservation law reduces to a purely kinematic law. Hence

we can say that 9 (and ω) is linked to the kinematic aspects of the flow.

10 ǫi j k =





+1 if i j k = 123, 231, or 312,

−1 if i j k = 321, 132, or 213,

0 if any two indices are alike

Note that v×w = (ǫi j kv jwk).

11 For any vector field A: ∇×(∇×A) = ∇(∇· A)− ∇2 A.
12 ∇×(v·∇v) = ω∇·v − ω·∇v + v·∇ω, ∇×(ρ−1∇ p) = −ρ−2(∇ρ×∇ p) = −ρ−1ρ′(p)(∇ p×∇ p) = 0.
13 The stretching of an incompressible particle of fluid implies by conservation of angular momentum an increase of

rotation, because the particle’s lateral dimension is reduced. In a viscous flow tangential forces due to the viscous stress do

change the fluid particle angular momentum, because they exert a torque on the fluid particle.
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Using the definition of the specific enthalpy i :

i = e + p

ρ
(1.26)

and the fundamental law of thermodynamics (1.8) we find for a homentropic flow (homogeneous fluid

with ds = 0):

di = dp

ρ
. (1.27)

Hence we can write Euler’s equation (1.20) as:

Dv

Dt
= −∇i + 1

ρ
f . (1.28)

We define the total specific enthalpy B (Bernoulli constant) of the flow by:

B = i + 1
2
v2. (1.29)

The total enthalpy B corresponds to the enthalpy which is reached in a hypothetical fully reversible

process when the fluid particle is decelerated down to a zero velocity (reservoir state). Using the vector

identity14:

(v ·∇)v = 1
2
∇v2 + ω×v (1.30)

we can write Euler’s equation (1.20) in Crocco’s form:

∂v

∂t
= −∇ B − ω×v + 1

ρ
f (1.31)

which will be used when we consider the sound production by vorticity. The acceleration ω×v cor-

responds to the acceleration of Coriolis experienced by an observer moving with the particle which is

rotating at an angular velocity of � = 1
2
ω.

When the flow is irrotational in the absence of external force ( f = 0), with v = ∇ϕ and hence

ω = ∇×∇ϕ = 0, we can rewrite (1.28) into:

∂∇ϕ
∂t

+ ∇ B = 0,

which may be integrated to Bernoulli’s equation:

∂ϕ

∂t
+ B = g(t), (1.32a)

or
∂ϕ

∂t
+ 1

2
v2 +

∫
dp

ρ
= g(t) (1.32b)

where g(t) is a function determined by boundary conditions. As only the gradient of ϕ is important

(v = ∇ϕ) we can, without loss of generality, absorb g(t) into ϕ and use g(t) = 0. In acoustics the

Bernoulli equation will appear to be very useful. We will see in section 2.7 that for a homentropic

flow we can write the energy conservation law (1.10) in the form:

∂

∂t
(ρB − p)+ ∇·(ρvB) = f ·v , (1.33a)

or
∂

∂t

(
ρ(e + 1

2
v2)

)
+ ∇·(ρvB) = f ·v . (1.33b)

14[(v·∇)v]i =
∑

j v j
∂
∂x j

vi
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Exercises

a) Derive Euler’s equation (1.20) from the conservation laws (1.1) and (1.2).

b) Derive the entropy conservation law (1.10) from the energy conservation law (1.6) and the second law

of thermodynamics (1.8).

c) Derive Bernoulli’s equation (1.32b) from Crocco’s equation (1.31).

d) Is the trace 1
3

Pii of the stress tensor Pi j always equal to the thermodynamic pressure p = (∂e/∂ρ−1)s?

e) Consider, as a model for a water pistol, a piston pushing with a constant acceleration a water from a tube

1 with surface area A1 and length ℓ1 through a tube 2 of surface A2 and length ℓ2. Calculate the force

necessary to move the piston if the water compressibility can be neglected and the water forms a free

jet at the exit of tube 2. Neglect the non-uniformity of the flow in the transition region between the two

tubes. What is the ratio of the pressure drop over the two tubes at t = 0?



2 Wave equation, speed of sound, and acoustic energy

2.1 Order of magnitude estimates

Starting from the conservation laws and the constitutive equations given in section 1.2 we will obtain

after linearization a wave equation in the next section. This implies that we can justify the approx-

imation introduced in section 1.2, (homentropic flow), and that we can show that in general, sound

is a small perturbation of a steady state, so that second order effects can be neglected. We there-

fore consider here some order of magnitude estimates of the various phenomena involved in sound

propagation.

We have defined sound as a pressure perturbation p′ which propagates as a wave and which is de-

tectable by the human ear. We limit ourselves to air and water. In dry air at 20◦C the speed of sound

c is 344 m/s, while in water a typical value of 1500 m/s is found. In section 2.3 we will discuss the

dependence of the speed of sound on various parameters (such as temperature, etc.). For harmonic

pressure fluctuations, the typical range of frequency of the human ear is:

20 Hz 6 f 6 20 kHz. (2.1)

The maximum sensitivity of the ear is around 3 kHz, (which corresponds to a policeman’s whistle!).

Sound involves a large range of power levels:

– when whispering we produce about 10−10 Watts,

– when shouting we produce about 10−5 Watts,

– a jet airplane at take off produces about 105 Watts.

In view of this large range of power levels and because our ear has roughly a logarithmic sensitivity

we commonly use the decibel scale to measure sound levels. The Sound Power Level (PWL) is given

in decibel (dB) by:

PWL = 10 log10(Power/10−12W). (2.2)

The Sound Pressure Level (SPL) is given by:

SPL = 20 log10(p
′
rms/pref) (2.3)

where p′
rms is the root mean square of the acoustic pressure fluctuations p′, and where pref = 2·10−5Pa

in air and pref = 10−6 Pa in other media. The sound intensity I is defined as the energy flux (power

per surface area) corresponding to sound propagation. The Intensity Level (IL) is given by:

IL = 10 log10(I/10−12 W/m2). (2.4)

The reference pressure level in air pref = 2·10−5Pa corresponds to the threshold of hearing at 1 kHz for

a typical human ear. The reference intensity level Iref = 10−12 W/m2 is related to this p′
ref = 2·10−5 Pa

in air by the relationship valid for progressive plane waves:

I = p′2
rms/ρ0c0 (2.5)
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where ρ0c0 = 4 ·102 kg/m2s for air under atmospheric conditions. Equation (2.5) will be derived later.

The threshold of pain1 (140 dB) corresponds in air to pressure fluctuations of p′
rms = 200 Pa. The

corresponding relative density fluctuations ρ ′/ρ0 are given at atmospheric pressure p0 = 105 Pa by:

ρ ′/ρ0 = p′/γ p0 6 10−3 (2.6)

where γ = CP/CV is the ratio of specific heats at constant pressure and volume respectively. In

general, by defining the speed of sound following equation 1.13, the relative density fluctuations are

given by:

ρ ′

ρ0

= 1

ρ0c2
0

p′ = 1

ρ0

(
∂ρ

∂p

)

s

p′. (2.7)

The factor 1/ρ0c2
0 is the adiabatic bulk compressibility modulus of the medium. Since for water ρ0 =

103 kg/m3 and c0 = 1.5 · 103 m/s we see that ρ0c2
0 ≃ 2.2 · 109 Pa, so that a compression wave of

10 bar corresponds to relative density fluctuations of order 10−3 in water. Linear theory will therefore

apply to such compression waves. When large expansion waves are created in water the pressure can

decrease below the saturation pressure of the liquid and cavitation bubbles may appear, which results

in strongly non-linear behaviour. On the other hand, however, since the formation of bubbles in pure

water is a slow process, strong expansion waves (negative pressures of the order of 103 bar!) can be

sustained in water before cavitation appears.

For acoustic waves in a stagnant medium, a progressive plane wave involves displacement of fluid

particles with a velocity u′ which is given by (as we will see in equations 2.20a, 2.20b):

u′ = p′/ρ0c0. (2.8)

The factor ρ0c0 is called the characteristic impedance of the fluid. By dividing (2.8) by c0 we see by

using (1.13) in the form p′ = c2
0ρ

′ that the acoustic Mach number u′/c0 is a measure for the relative

density variation ρ ′/ρ0. In the absence of mean flow (u0 = 0) this implies that a convective term such

as ρ(v ·∇)v in the momentum conservation (1.20) is of second order and can be neglected in a linear

approximation.

The amplitude of the fluid particle displacement δ corresponding to harmonic wave propagation at a

circular frequency ω = 2π f is given by:

δ = |u′|/ω. (2.9)

Hence, for f = 1 kHz we have in air:

SPL = 140 dB, p′
rms = 2 · 102 Pa, u′ = 5 · 10−1 m/s, δ = 8 · 10−5 m,

SPL = 0 dB, p′
rms = 2 · 10−5 Pa, u′ = 5 · 10−8 m/s, δ = 1 · 10−11 m.

In order to justify a linearization of the equations of motion, the acoustic displacement δ should be

small compared to the characteristic length scale L in the geometry considered. In other words, the

acoustical Strouhal number Sr a = L/δ should be large. In particular, if δ is larger than the radius of

curvature R of the wall at edges the flow will separate from the wall resulting into vortex shedding.

So a small acoustical Strouhal number R/δ implies that non-linear effects due to vortex shedding are

important. This is a strongly non-linear effect which becomes important with decreasing frequency,

because δ increases when ω decreases.

1The SPL which we can only endure for a very short period of time without the risk of permanent ear damage.
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We see from the data given above that the particle displacement δ can be significantly smaller than

the molecular mean free path ℓ̄ which in air at atmospheric pressure is about 5 · 10−8 m. It should

be noted that a continuum hypothesis as assumed in chapter 1 does apply to sound even at such low

amplitudes because δ is not the relevant length scale. The continuum hypothesis is valid if we can

define an air particle which is small compared to the dimensions of our measuring device (eardrum,

diameter D = 5mm) or to the wave length λ, but large compared to the mean free path ℓ̄ = 5 ·10−8 m.

It is obvious that we can satisfy this condition since for f = 20 kHz the wave length:

λ = c0/ f (2.10)

is still large (λ ≃ 1.7 cm) compared to ℓ̄. In terms of our ear drum we can say that although a

displacement of δ = 10−11 m of an individual molecule cannot be measured, the same displacement

averaged over a large amount of molecules at the ear drum can be heard as sound.

It appears that for harmonic signals of frequency f = 1kHz the threshold of hearing p′
ref = 2 ·10−5 Pa

corresponds to the thermal fluctuations p′
th of the atmospheric pressure p0 detected by our ear. This

result is obtained by calculating the number of molecules N colliding within half an oscillation period

with our eardrum2: N ∼ n D2c0/2 f , where n is the air molecular number density3. As N ≃ 1020 and

p′
th ≃ p0/

√
N we find that p′

th ≃ 10−5 Pa.

In gases the continuum hypothesis is directly coupled to the assumption that the wave is isentropic

and frictionless. Both the kinematic viscosity ν = η/ρ and the heat diffusivity a = K/ρCP of a gas

are typically of the order of cℓ̄, the product of sound speed c and mean free path ℓ̄. This is related

to the fact that c is in a gas a measure for the random (thermal) molecular velocities that we know

macroscopically as heat and momentum diffusion. Therefore, in gases the absence of friction goes

together with isentropy. Note that this is not the case in fluids. Here, isothermal rather than isentropic

wave propagation is common for normal frequencies.

As a result from this relation ν ∼ cℓ̄, the ratio between the acoustic wave length λ and the mean free

path ℓ̄, which is an acoustic Knudsen number, can also be interpreted as an acoustic Fourier number:

λ

ℓ̄
= λc

ν
= λ2 f

ν
. (2.11)

This relates the diffusion length (ν/ f )1/2 for viscous effects to the acoustic wave length λ. Moreover,

this ratio can also be considered as an unsteady Reynolds number Re t :

Re t =

∣∣∣ρ ∂u′

∂t

∣∣∣
∣∣∣η∂

2u′

∂x2

∣∣∣
∼ λ2 f

ν
, (2.12)

which is for a plane acoustic wave just the ratio between inertial and viscous forces in the momentum

conservation law. For air ν = 1.5·10−5 m2/s so that for f = 1kHz we have Re t = 4·107. We therefore

expect viscosity to play a significant rôle only if the sound propagates over distances of 107 wave

lengths or more (3 · 103 km for f = 1 kHz). In practice the kinematic viscosity appears to be a rather

unimportant effect in the attenuation of waves in free space. The main dissipation mechanism is the

2The thermal velocity of molecules may be estimated to be equal to c0.
3n is calculated for an ideal gas with molar mass M from: n = NA ρ/M = NA p/M RT = p/RT (see section 2.3)

where NA is the Avogadro number
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departure from thermodynamic equilibrium, due to the relatively long relaxation times of molecular

motion associated to the internal degrees of freedom (rotation, vibration). This effect is related to the

so-called bulk or volume viscosity which we quoted in chapter 1.

In general the attenuation of sound waves increases with frequency. This explains why we hear the

lower frequencies of an airplane more and more accentuated as it flies from near the observation point

(e.g. the airport) away to large distances (10 km).

In the presence of walls the viscous dissipation and thermal conduction will result into a significant

attenuation of the waves over quite short distances. The amplitude of a plane wave travelling along a

tube of cross-sectional surface area A and perimeter L p will decrease with the distance x along the

tube following an exponential factor e−αx , where the damping coefficient α is given at reasonably high

frequencies (A/L p ≫ √
ν/ω but ω

√
A/c0 < 1) by [178]:

α = L p

2Ac

√
π f ν

(
1 + γ − 1√

ν/a

)
. (2.13)

(This equation will be derived in section 4.5.) For air γ = CP/CV = 1.4 while ν/a = 0.72. For a

musical instrument at 400 Hz, such as the clarinet, α = 0.05m−1 so that a frictionless approximation is

not a very accurate but still a fair first approximation. As a general rule, at low amplitudes the viscous

dissipation is dominant in woodwind instruments at the fundamental (lowest) playing frequency. At

higher frequencies the radiation losses which we will discuss later (chapter 6) become dominant.

Similar arguments hold for water, except that because the temperature fluctuations due to compression

are negligible, the heat conduction is not significant even in the presence of walls (γ = 1).

A small ratio ρ ′/ρ0 of acoustic density fluctuations ρ ′ to the mean density ρ0 implies that over dis-

tances of the order of a few wave lengths non-linear effects are negligible. When dissipation is very

small acoustic waves can propagate over such large distances that non-linear effects always become

significant (we will discuss this in section 4.2).

2.2 Wave equation for a uniform stagnant fluid and compactness

2.2.1 Linearization and wave equation

In the previous section we have seen that in what we call acoustic phenomena the density fluctuations

ρ ′/ρ0 are very small. We also have seen that the fluid velocity fluctuation v′ associated with the wave

propagation, of the order of (ρ ′/ρ0)c0, are also small. This justifies the use of a linear approximation

of the equations describing the fluid motion which we presented in chapter 1.

Even with the additional assumption that the flow is frictionless, the equations one obtains may still be

complex if we assume a non-uniform mean flow or a non-uniform density distribution ρ0. A derivation

of general linearized wave equations is discussed by Pierce [178] and Goldstein [70].

We first limit ourselves to the case of acoustic perturbations (p′, ρ ′, s′, v′ . . .) of a stagnant (u0 = 0)

uniform fluid (p0, ρ0, s0, . . .). Such conditions are also described in the literature as a quiescent fluid.
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In a quiescent fluid the equations of motion given in chapter 1 simplify to:

∂ρ ′

∂t
+ ρ0∇·v′ = 0 (2.14a)

ρ0

∂v′

∂t
+ ∇ p′ = 0 (2.14b)

∂s′

∂t
= 0 (2.14c)

where second order terms in the perturbations have been neglected. The constitutive equation (1.13)

becomes:

p′ = c2
0ρ

′. (2.15)

By subtracting the time derivative of the mass conservation law (2.14a) from the divergence of the

momentum conservation law (2.14b) we eliminate v′ to obtain:

∂2ρ ′

∂t2
− ∇2 p′ = 0. (2.16)

Using the constitutive equation p′ = c2
0ρ

′ (2.15) to eliminate either ρ ′ or p′ yields the wave equations:

∂2 p′

∂t2
− c2

0∇2 p′ = 0 (2.17a)

or

∂2ρ ′

∂t2
− c2

0∇2ρ ′ = 0. (2.17b)

Using the linearized Bernoulli equation:

∂ϕ′

∂t
+ p′

ρ0

= 0 (2.18)

which should be valid because the acoustic field is irrotational4 , we can derive from (2.17a) a wave

equation for ∂ϕ′/∂t . We find therefore that ϕ′ satisfies the same wave equation as the pressure and the

density:

∂2ϕ′

∂t2
− c2

0∇2ϕ′ = 0. (2.19)

Taking the gradient of (2.19) we obtain a wave equation for the velocity v′ = ∇ϕ′. Although a rather

abstract quantity, the potential ϕ′ is convenient for many calculations in acoustics. The linearized

Bernoulli equation (2.18) is used to translate the results obtained for ϕ′ into less abstract quantities

such as the pressure fluctuations p′.

4 In the case considered this property follows from the fact that ∇×(ρ0
∂
∂t v

′ + ∇ p) = ρ0
∂
∂t (∇×v′) = 0. In general this

property is imposed by the definition of the acoustic field.
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2.2.2 Simple solutions

Two of the most simple and therefore most important solutions to the wave equation are d’Alembert’s

solution in one and three dimensions. In 1-D we have the general solution

p′ = f (x − c0t)+ g(x + c0t), (2.20a)

v′ = 1

ρ0c0

(
f (x − c0t)− g(x + c0t)

)
, (2.20b)

where f and g are determined by boundary and initial conditions, but otherwise they are arbitrary.

The velocity v′ is obtained from the pressure p′ by using the linearized momentum equation (2.14b).

As is seen from the respective arguments x ± c0t , the “ f ”-part corresponds to a right-running wave

(in positive x-direction) and the “g”-part to a left-running wave. This solution is especially useful to

describe low frequency sound waves in hard-walled ducts, and free field plane waves. To allow for a

general orientation of the coordinate system, a free field plane wave is in general written as

p′ = f (n·x − c0t), v′ = n
ρ0c0

f (n·x − c0t), (2.21)

where the direction of propagation is given by the unit vector n. Rather than only left- and right-

running waves as in the 1-D case, in free field any sum (or integral) over directions n may be taken.

A time harmonic plane wave of frequency ω is usually written in complex form5 as

p′ = A eiωt−ik·x, v′ = k
ρ0ω

A eiωt−ik·x, c2
0|k|2 = ω2, (2.22)

where the wave-number vector, or wave vector, k = nk = n ω
c0

, indicates the direction of propagation

of the wave (at least, in the present uniform and stagnant medium).

In 3-D we have a general solution for spherically symmetric waves (i.e. depending only on radial

distance r). They are rather similar to the 1-D solution, because the combination rp(r, t) happens to

satisfy the 1-D wave equation (see section 6.2). Since the outward radiated wave energy spreads out

over the surface of a sphere, the inherent 1/r-decay is necessary from energy conservation arguments.

It should be noted, however, that unlike in the 1-D case, the corresponding radial velocity v′
r is rather

more complicated. The velocity should be determined from the pressure by time-integration of the

momentum equation (2.14b), written in radial coordinates.

We have for pressure and radial velocity

p′ = 1

r
f (r − c0t)+ 1

r
g(r + c0t), (2.23a)

v′
r = 1

ρ0c0

(1

r
f (r − c0t)− 1

r2
F(r − c0t)

)
− 1

ρ0c0

(1

r
g(r + c0t)− 1

r2
G(r + c0t)

)
, (2.23b)

where F(z) =
∫

f (z)dz and G(z) =
∫

g(z)dz. Usually we have only outgoing waves, which means

for any physical solution that the field vanishes before some time t0 (causality). Hence, f (z) = 0 for

z = r − c0t ≥ r − c0t0 ≥ −c0t0 because r ≥ 0, and g(z) = 0 for any z = r + c0t ≤ r + c0t0. Since r

is not restricted from above, this implies that

g(z) ≡ 0 for all z.

5The physical quantity considered is described by the real part.
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This solution (2.23a,2.23b) is especially useful to describe the field of small symmetric sources (mono-

poles), modelled in a point. Furthermore, by differentiation6 to the source position other solutions of

the wave equation can be generated (of dipole-type and higher). For example, since ∂
∂x

r = x
r
, we have

p′ = x

r2

(
f ′(r − c0t)− 1

r
f (r − c0t)

)
, (2.24a)

v′
r = 1

ρ0c0

x

r2

(
f ′(r − c0t)− 2

r
f (r − c0t)+ 2

r2
F(r − c0t)

)
, (2.24b)

where f ′ denotes the derivative of f to its argument.

Since the rôle of r and t is symmetric in f and anti-symmetric in g, we may formulate the causality

condition in t also as a boundary condition in r . A causal wave vanishes outside a large sphere, of

which the radius grows linearly in time with velocity c0. This remains true for any field in free space

from a source of finite size, because far away the field simplifies to that of a point source (although

not necessarily spherically symmetric).

In the case of the idealization of a time-harmonic field we cannot apply this causality condition dir-

ectly, but we can use a slightly modified form of the boundary condition in r , called Sommerfeld’s

radiation condition:

lim
r→∞

r
(∂p′

∂t
+ c0

∂p′

∂r

)
= 0. (2.25)

A more general discussion on causality for a time-harmonic field will be given in section C.1.1. The

general solution of sound radiation from spheres may be found in [148, ch7.2].

2.2.3 Compactness

In regions –for example at boundaries– where the acoustic potential ϕ′ varies significantly over dis-

tances L which are short compared to the wave length λ, the acoustic flow can locally be approximated

as an incompressible potential flow. Such a region is called compact, and a source of size, much smal-

ler than λ, is a compact source. For a more precise definition we should assume that we can distinguish

a typical time scale τ or frequency ω and length scale L in the problem. In dimensionless form the

wave equation is then:

3∑

i=1

∂2ϕ′

∂ x̄2
i

= (He )2
∂2ϕ′

∂ t̄2
, He = L

c0τ
= ωL

c0

= 2πL

λ
= kL (2.26)

where t̄ = t/τ = ωt and x̄i = xi/L . The dimensionless number He is called the Helmholtz number.

When τ and L are well chosen, ∂2ϕ′/∂ t̄2 and ∂2ϕ′/∂ x̄2
i are of the same order of magnitude, and the

character of the wave motion is completely described by He . In a compact region we have:

He ≪ 1. (2.27)

This may occur, as suggested above, near a singularity where spatial gradients become large, or at

low frequencies when time derivatives become small. Within the compact region the time derivatives,

6We may freely differentiate the pressure but not the velocity! The unit vectors in spherical coordinates are not position-

invariant. However, we conveniently obtain the velocity from v′ = i
kρ0c0

∇ p′. In particular, v′r = i
kρ0c0

∂p′
∂r

.
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being multiplied by the small He, may be ignored and the potential satisfies to leading order the

Laplace equation:

∇2ϕ′ = 0 (2.28)

which describes an incompressible potential flow (∇·v′ = 0). This allows us to use incompressible

potential flow theory to derive the local behaviour of an acoustic field in a compact region. If the

compact region is embedded in a larger acoustic region of simpler nature, it acts on the scale of the

larger region as a point source, usually allowing a relatively simple acoustic field. By matching the

local incompressible approximation to this “far field” solution (spherical waves, plane waves), the

solutions may be determined. The matching procedure is usually carried out almost intuitively in the

first order approximation. Higher order approximations are obtained by using the method of Matched

Asymptotic Expansions (section 8.8, [42]).

2.3 Speed of sound

2.3.1 Ideal gas

In the previous section we have assumed that the speed of sound c2
0 = (∂p/∂ρ)s is constant. However,

in many interesting cases c0 is non-uniform in space and this affects the propagation of waves. We

therefore give here a short review of the dependence of the speed of sound in gas and water on some

parameters like temperature.

Air at atmospheric pressure behaves as an ideal gas. The equation of state for an ideal gas is:

p = ρRT, (2.29)

where p is the pressure, ρ is the density and T is the absolute temperature. R is the specific gas

constant7 which is related to the Boltzmann constant kB = 1.38066 · 10−23 J/K and the Avogadro

number NA = 6.022 · 1023 mol−1 by:

R = kBNA/M, (2.30)

where M is the molar mass of the gas (in kg/mol). For air R = 286.73 J/kg K. For an ideal gas we

have further the relationship:

R = CP − CV , (2.31)

where CP and CV are the specific heats at constant pressure and volume, respectively. For an ideal

gas the internal energy e depends only on the temperature [171], with (1.15) leading to de = CV dT ,

so that by using the second law of thermodynamics, we find for an isentropic process (ds = 0):

CV dT = −p d(ρ−1) or
dT

T
= R

CV

dρ

ρ
. (2.32)

By using (2.29) and (2.31) we find for an isentropic process:

dρ

ρ
+ dT

T
= dp

p
= γ

dρ

ρ
, (2.33)

7The universal gas constant is: R = kBNA = 8.31431 J/K mol.
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where:

γ = CP/CV (2.34)

is the specific-heat ratio. Comparison of (2.33) with the definition of the speed of sound c2 = (∂p/∂ρ)s
yields:

c = (γ p/ρ)1/2 or c = (γ RT )1/2. (2.35)

We see from this equation that the speed of sound of an ideal gas of given chemical composition

depends only on the temperature. For a mixture of ideal gases with mole fraction X i of component i

the molar mass M is given by:

M =
∑

i

Mi X i (2.36)

where Mi is the molar mass of component i . The specific-heat ratio γ of the mixture can be calculated

by:

γ =
∑

X iγi/(γi − 1)∑
X i/(γi − 1)

(2.37)

because γi/(γi − 1) = Mi Cp,i/R and γi = Cp,i/CV ,i . For air γ = 1.402, whilst the speed of sound

at T = 273.15 K is c = 331.45 m/s. Moisture in air will only slightly affect the speed of sound but

will drastically affect the damping, due to departure from thermodynamic equilibrium [234].

The temperature dependence of the speed of sound is responsible for spectacular differences in sound

propagation in the atmosphere. For example, the vertical temperature stratification of the atmosphere

(from colder near the ground to warmer at higher levels) that occurs on a winter day with fresh fallen

snow refracts the sound back to the ground level, in a way that we hear traffic over much larger

distances than on a hot summer afternoon. These refraction effects will be discussed in section 8.6.

2.3.2 Water

For pure water, the speed of sound in the temperature range 273 K to 293 K and in the pressure range

105 to 107 Pa can be calculated from the empirical formula [178]:

c = c0 + a(T − T0)+ bp (2.38)

where c0 = 1447 m/s, a = 4.0 m/sK, T0 = 283.16 K and b = 1.6 · 10−6 m/sPa. The presence of salt

in sea water does significantly affect the speed of sound.

2.3.3 Bubbly liquid at low frequencies

Also the presence of air bubbles in water can have a dramatic effect on the speed of sound ([115, 42]).

The speed of sound is by definition determined by the “mass” density ρ and the isentropic bulk

modulus:

Ks = ρ

(
∂p

∂ρ

)

s

(2.39)
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which is a measure for the “stiffness” of the fluid. The speed of sound c, given by:

c = (Ks/ρ)
1
2 (2.40)

increases with increasing stiffness, and decreases with increasing inertia (density ρ). In a one-

dimensional model consisting of a discrete mass M connected by a spring of constant K , we can

understand this behaviour intuitively. This mass-spring model was used by Newton to derive equation

(2.40), except for the fact that he used the isothermal bulk modulus KT rather than Ks . This resulted

in an error of γ 1/2 in the predicted speed of sound in air which was corrected by Laplace [234].

A small fraction of air bubbles present in water considerably reduces the bulk modulus Ks , while at the

same time the density ρ is not strongly affected. As the Ks of the mixture can approach that for pure

air, one observes in such mixtures velocities of sound much lower than in air (or water). The behaviour

of air bubbles at high frequencies involves a possible resonance which we will discuss in chapter 4

and chapter 6. We now assume that the bubbles are in mechanical equilibrium with the water, which

allows a low frequency approximation. Combining this assumption with (2.40), following Crighton

[42], we derive an expression for the soundspeed c of the mixture as a function of the volume fraction

β of gas in the water. The density ρ of the mixture is given by:

ρ = (1 − β)ρℓ + βρg, (2.41)

where ρℓ and ρg are the liquid and gas densities. If we consider a small change in pressure dp we

obtain:

dρ

dp
= (1 − β)

dρℓ

dp
+ β

dρg

dp
+ (ρg − ρℓ)

dβ

dp
(2.42)

where we assume both the gas and the liquid to compress isothermally [42]. If no gas dissolves in the

liquid, so that the mass fraction (βρg/ρ) of gas remains constant, we have:

ρg

dβ

dp
+ β

dρg

dp
− βρg

ρ

dρ

dp
= 0. (2.43)

Using the notation c2 = dp/dρ, c2
g = dp/dρg and c2

ℓ = dp/dρℓ, we find by elimination of dβ/dp

from (2.42) and (2.43):

1

ρc2
= 1 − β

ρℓc
2
ℓ

+ β

ρgc2
g

. (2.44)

It is interesting to see that for small values of β the speed of sound c drops drastically from cℓ at β = 0

towards a value lower than cg . The minimum speed of sound occurs at β = 0.5, and at 1 bar we find

for example in a water/air mixture c ≃ 24 m/s! In the case of β not being close to zero or unity, we

can use the fact that ρgc2
g ≪ ρℓc

2
ℓ and ρg ≪ ρℓ, to approximate (2.44) by:

ρc2 ≃
ρgc2

g

β
, or c2 ≃

ρgc2
g

β(1 − β)ρℓ
. (2.45)

The gas fraction determines the bulk modulus ρgc2
g/β of the mixture, while the water determines the

density (1 − β)ρℓ. Hence, we see that the presence of bubbles around a ship may dramatically affect

the sound propagation near the surface. Air bubbles are also introduced in sea water near the surface

by surface waves. The dynamics of bubbles involving oscillations (see chapter 4 and chapter 6) appear

to induce spectacular dispersion effects [42], which we have ignored here.
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2.4 Influence of temperature gradient

In section 2.2 we derived a wave equation (2.17a) for an homogeneous stagnant medium. We have

seen in section 2.3 that the speed of sound in the atmosphere is expected to vary considerably as a

result of temperature gradients. In many cases, when the acoustic wave length is small compared to

the temperature gradient length (distance over which a significant temperature variation occurs) we

can still use the wave equation (2.17a). It is however interesting to derive a wave equation in the more

general case: for a stagnant ideal gas with an arbitrary temperature distribution.

We start from the linearized equations for the conservation of mass, momentum and energy for a

stagnant gas:

∂ρ ′

∂t
+ ∇·(ρ0v

′) = 0 (2.46a)

ρ0

∂v′

∂t
+ ∇ p′ = 0 (2.46b)

∂s′

∂t
+ v′ ·∇s0 = 0, (2.46c)

where ρ0 and s0 vary in space. The constitutive equation for isentropic flow (Ds/Dt = 0):

Dp

Dt
= c2 Dρ

Dt

can be written as8:

∂p′

∂t
+ v′ ·∇ p0 = c2

0

(∂ρ ′

∂t
+ v′ ·∇ρ0

)
. (2.47)

Combining (2.47) with the continuity equation (2.46a) we find:

(∂p′

∂t
+ v′ ·∇ p0

)
+ ρ0c2

0∇·v′ = 0. (2.48)

If we consider temperature gradients over a small height (in a horizontal tube for example) so that the

variation in p0 can be neglected (∇ p0/p0 ≪ ∇T0/T0), we can approximate (2.48) by:

∇·v′ = − 1

ρ0c2
0

∂p′

∂t
.

Taking the divergence of the momentum conservation law (2.46b) yields:

∂

∂t
(∇·v′)+ ∇·

( 1

ρ0

∇ p′
)

= 0.

By elimination of ∇·v′ we obtain:

∂2 p′

∂t2
− c2

0ρ0∇·
( 1

ρ0

∇ p′
)

= 0. (2.49)

For an ideal gas c2
0 = γ p0/ρ0, and since we assumed p0 to be uniform, we have that ρ0c2

0, given by:

ρ0c2
0 = γ p0

8Why do we not use (2.15)?
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is a constant so that equation (2.49) can be written in the form:

∂2 p′

∂t2
− ∇·(c2

0∇ p′) = 0. (2.50)

This is a rather complex wave equation, since c0 is non-uniform. We will in section 8.6 consider

approximate solutions for this equation in the case (∇c0/ω) ≪ 1 and for large propagation distances.

This approximation is called geometrical or ray acoustics.

It is interesting to note that, unlike in quiescent (i.e. uniform and stagnant) fluids, the wave equation

(2.50) for the pressure fluctuation p′ in a stagnant non-uniform ideal gas is not valid for the density

fluctuations. This is because here the density fluctuations ρ ′ not only relate to pressure fluctuations but

also to convective effects (2.47). Which acoustic variable is selected to work with is only indifferent

in a quiescent fluid. This will be elaborated further in the discussion on the sources of sound in section

2.6.

2.5 Influence of mean flow

See also Appendix F. In the presence of a mean flow that satisfies

∇·ρ0v0 = 0, ρ0v0 ·∇v0 = −∇ p0, v0 ·∇s0 = 0, v0 ·∇ p0 = c2
0v0 ·∇ρ0,

the linearized conservation laws, and constitutive equation for isentropic flow, become (without

sources):

∂ρ ′

∂t
+ v0 ·∇ρ ′ + v′ ·∇ρ0 + ρ0∇·v′ + ρ ′∇·v0 = 0 (2.51a)

ρ0

(∂v′

∂t
+ v0 ·∇v′ + v′ ·∇v0

)
+ ρ ′v0 ·∇v0 = −∇ p′ (2.51b)

∂s′

∂t
+ v0 ·∇s′ + v′ ·∇s0 = 0. (2.51c)

∂p′

∂t
+ v0 ·∇ p′ + v′ ·∇ p0 = c2

0

(∂ρ ′

∂t
+ v0 ·∇ρ ′ + v′ ·∇ρ0

)
+ c2

0

(
v0 ·∇ρ0

)( p′

p0

− ρ ′

ρ0

)

(2.51d)

A wave equation can only be obtained from these equations if simplifying assumptions are introduced.

For a uniform medium with uniform flow velocity v0 6= 0 we obtain

( ∂
∂t

+ v0 ·∇)2
p′ − c2

0∇2 p′ = 0 (2.52)

where ∂
∂t

+ v0 ·∇ denotes a time derivative moving with the mean flow.

2.6 Sources of sound

2.6.1 Inverse problem and uniqueness of sources

Until now we have focused our attention on the propagation of sound. As starting point for the de-

rivation of wave equations we have used the linearized equations of motion and we have assumed
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that the mass source term m and the external force density f in (1.1) and (1.2) were absent. Without

these restrictions we still can (under specific conditions) derive a wave equation. The wave equation

will now be non-homogeneous, i.e. it will contain a source term q. For example, we may find in the

absence of mean flow:

∂2 p′

∂t2
− c2

0∇2 p′ = q. (2.53)

Often we will consider situations where the source q is concentrated in a limited region of space

embedded in a stagnant uniform fluid. As we will see later the acoustic field p′ can formally be

determined for a given source distribution q by means of a Green’s function. This solution p′ is unique.

It should be noted that the so-called inverse problem of determining q from the measurement of p′

outside the source region does not have a unique solution without at least some additional information

on the structure of the source. This statement is easily verified by the construction of another sound

field, for example [64]: p′ + F , for any smooth function F that vanishes outside the source region

(i.e. F = 0 wherever q = 0), for example F ∝ q itself! This field is outside the source region exactly

equal to the original field p′. On the other hand, it is not the solution of equation (2.53), because it

satisfies a wave equation with another source:

( ∂2

∂t2
− c2

0∇2
)
(p′ + F) = q +

( ∂2

∂t2
− c2

0∇2
)
F. (2.54)

In general this source is not equal to q. This proves that the measurement of the acoustic field outside

the source region is not sufficient to determine the source uniquely [52].

2.6.2 Mass and momentum injection

As a first example of a non-homogeneous wave equation we consider the effect of the mass source

term m on a uniform stagnant fluid. We further assume that a linear approximation is valid. Consider

the inhomogeneous equation of mass conservation

∂

∂t
ρ + ∇·(ρv) = m (2.55)

and a linearized form of the equation of momentum conservation

∂

∂t
(ρv)+ ∇ p′ = f . (2.56)

The source m consists of mass of density ρm of volume fraction β = β(x, t) injected at a rate

m = ∂

∂t
(βρm). (2.57)

The source region is where β 6= 0. Since the injected mass displaces the original mass ρ f by the same

(but negative) amount of volume, the total fluid density is

ρ = βρm + (1 − β)ρ f (2.58)

where the injected matter does not mix with the original fluid. Substitute (2.58) in (2.55) and eliminate

βρm

∂

∂t
ρ f + ∇·(ρv) = ∂

∂t
(βρ f ). (2.59)
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Eliminate ρv from (2.56) and (2.59)

∂2

∂t2
ρ f − ∇2 p′ = ∂2

∂t2
(βρ f )− ∇· f . (2.60)

If we assume, for simplicity, that p′ = c2
0ρ

′
f everywhere, where ρ ′

f is the fluctuating part of ρ f which

corresponds to the sound field outside the source region, then

1

c2
0

∂2

∂t2
p′ − ∇2 p′ = ∂2

∂t2
(βρ f )− ∇· f (2.61)

which shows that mass injection is a source of sound, primarily because of the displacement of a

volume fraction β of the original fluid ρ f . Hence injecting mass with a large density ρm is not neces-

sarily an effective source of sound.

We see from (2.61) that a continuous injection of mass of constant density does not produce sound,

because ∂2βρ f /∂t2 vanishes. In addition, it can be shown in an analogous way that in linear approx-

imation the presence of a uniform force field (a uniform gravitational field, for example) does not

affect the sound field in a uniform stagnant fluid.

2.6.3 Lighthill’s analogy

We now indicate how a wave equation with aerodynamic source terms can be derived. The most

famous wave equation of this type is the equation of Lighthill.

The notion of “analogy” refers here to the idea of representing a complex fluid mechanical process

that acts as an acoustic source by an acoustically equivalent source term. For example, one may model

a clarinet as an idealized resonator formed by a closed pipe, with the effect of the flow through the

mouth piece represented by a mass source at one end. In that particular case we express by this analogy

the fact that the internal acoustic field of the clarinet is dominated by a standing wave corresponding

to a resonance of the (ideal) resonator.

While Lighthill’s equation is formally exact (i.e. derived without approximation from the Navier-

Stokes equations), it is only useful when we consider the case of a limited source region embedded in

a uniform stagnant fluid. At least we assume that the listener which detects the acoustic field at a point

x at time t is surrounded by a uniform stagnant fluid characterized by a speed of sound c0. Hence the

acoustic field at the listener should accurately be described by the wave equation:

∂2ρ ′

∂t2
− c2

0∇2ρ ′ = 0 (2.17b)

where we have chosen ρ ′ as the acoustic variable as this will appear to be the most convenient

choice for problems like the prediction of sound produced by turbulence. The key idea of the so-

called “aero-acoustic analogy” of Lighthill is that we now derive from the exact equations of motion

a non-homogeneous wave equation with the propagation part as given by (2.17b). Hence the uniform

stagnant fluid with sound speed c0, density ρ0 and pressure p0 at the listener’s location is assumed

to extend into the entire space, and any departure from the “ideal” acoustic behaviour predicted by

(2.17b) is equivalent to a source of sound for the observer [119, 120, 181, 81].
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By taking the time derivative of the mass conservation law (1.1) and eliminating ∂m/∂t as in (2.59)

we find:

∂2

∂t∂xi

(ρvi) = ∂m

∂t
− ∂2ρ

∂t2
= −∂

2ρ f

∂t2
+ ∂2βρ f

∂t2
. (2.62)

By taking the divergence of the momentum conservation law (1.2) we find:

∂2

∂t∂xi

(ρvi) = − ∂2

∂xi∂x j

(Pi j + ρviv j )+ ∂ fi

∂xi

. (2.63)

Hence we find from (2.62) and (2.63) the exact relation:

∂2ρ f

∂t2
= ∂2

∂xi∂x j

(Pi j + ρviv j )+ ∂2βρ f

∂t2
− ∂ fi

∂xi

. (2.64)

Because ρ f = ρ0 + ρ ′ where only ρ ′ varies in time we can construct a wave equation for ρ ′ by

subtracting from both sides of (2.63) a term c2
0(∂

2ρ ′/∂x2
i ) where in order to be meaningful c0 is not

the local speed of sound but that at the listener’s location.

In this way we have obtained the famous equation of Lighthill:

∂2ρ ′

∂t2
− c2

0

∂2ρ ′

∂x2
i

= ∂2Ti j

∂xi∂x j

+ ∂2βρ f

∂t2
− ∂ fi

∂xi

(2.65)

where Lighthill’s stress tensor Ti j is defined by:

Ti j = Pi j + ρviv j − (c2
0ρ

′ + p0)δi j . (2.66)

We used

c2
0

∂2ρ ′

∂x2
i

= ∂2(c2
0ρ

′δi j )

∂xi∂x j

(2.67)

which is exact because c0 is a constant. Making use of definition (1.4) we can also write:

Ti j = ρviv j − τi j + (p′ − c2
0ρ

′)δi j (2.68)

which is the usual form in the literature9 . In equation (2.68) we distinguish three basic aero-acoustic

processes which result in sources of sound:

– the non-linear convective forces described by the Reynolds stress tensor ρviv j ,

– the viscous forces τi j ,

– the deviation from a uniform sound velocity c0 or the deviation from an isentropic behaviour

(p′ − c2
0ρ

′).

9The perturbations are defined as the deviation from the uniform reference state (ρ0, p0): ρ
′ = ρ−ρ0, and p′ = p− p0.
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As no approximations have been made, equation (2.65) is exact and not easier to solve than the ori-

ginal equations of motion. In fact, we have used four equations: the mass conservation and the three

components of the momentum conservation to derive a single equation. We are therefore certainly not

closer to a solution unless we introduce some additional simplifying assumptions.

The usefulness of (2.65) is that we can introduce some crude simplifications which yield an order of

magnitude estimate for ρ ′. Such estimation procedure is based on the physical interpretation of the

source term. However, a key step of Lighthill’s analysis is to delay this physical interpretation until

an integral equation formulation of (2.65) has been obtained. This is an efficient approach because an

order of magnitude estimate of ∂2Ti j /∂xi∂x j involves the estimation of spatial derivatives which is

very difficult, while, as we will see, in an integral formulation we will need only an estimate for an

average value of Ti j in order to obtain some relevant information on the acoustic field.

This crucial step was not recognized before the original papers of Lighthill [119, 120]. For a given

experimental or numerical set of data on the flow field in the source region, the integral formulation

of Lighthill’s analogy often provides a maximum amount of information about the generated acoustic

field.

Unlike in the propagation in a uniform fluid the choice of the acoustic variable appeared already in

the presence of a temperature gradient (section 2.4) to affect the character of the wave equation. If we

derive a wave equation for p′ instead of ρ ′, the structure of the source terms will be different. In some

cases it appears to be more convenient to use p′ instead of ρ ′. This is the case when unsteady heat

release occurs such as in combustion problems. Starting from equation (2.64) in the form:

∂2 p

∂x2
i

= ∂2ρ

∂t2
+ ∂2

∂xi∂x j

(τi j − ρviv j )

where we assumed that m = 0 and f = 0, we find by subtraction of c−2
0 (∂2/∂t2)p′ on both sides:

1

c2
0

∂2 p′

∂t2
− ∂2 p′

∂x2
i

= ∂2

∂xi∂x j

(ρviv j − τi j )+ ∂2 p0

∂x2
i

+ ∂2

∂t2

( p′

c2
0

− ρ ′
)

(2.69)

where the term ∂2 p0/∂x2
i vanishes because p0 is a constant.

Comparing (2.65) with (2.69) shows that the deviation from an isentropic behaviour leads to a source

term of the type (∂2/∂x2
i )(p

′ − c2
0ρ

′) when we choose ρ ′ as the acoustic variable, while we find

a term (∂2/∂t2)(p′/c2
0 − ρ ′) when we choose p′ as the acoustic variable. Hence ρ ′ is more appro-

priate to describe the sound generation due to non-uniformity as for example the so-called acoustic

“Bremsstrahlung” produced by the acceleration of a fluid particle with an entropy different from the

main flow. The sound production by unsteady heat transfer or combustion is easier to describe in terms

of p′ (Howe [81]).

We see that (∂/∂t)(p′/c2
0 − ρ ′) acts as a mass source term m, which is intuitively more easily un-

derstood (Crighton et al. [42]) when using the thermodynamic relation (1.12) applied to a moving

particle:

Dp

Dt
= c2 Dρ

Dt
+

(
∂p

∂s

)

ρ

Ds

Dt
. (1.12)

We find from (1.12) that:

D

Dt

(
p′

c2
0

− ρ ′
)

=
(

c2

c2
0

− 1

)
Dρ ′

Dt
+ ρ2

c2
0

(
∂T

∂ρ

)

s

Ds′

Dt
(2.70)
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where we made use of the thermodynamic relation:

(
∂p

∂s

)

ρ

= ρ2

(
∂T

∂ρ

)

s

(2.71)

derived from the fundamental law of thermodynamics (1.8) in the form:

de = T ds − p d(ρ−1). (1.8)

As a final result, using the mass conservation law, we find

−∂
2ρe

∂t2
= ∂

∂t

[(
c2

c2
0

− 1 + ρe

ρ

)
Dρ ′

Dt
+ ρ2

c2
0

(
∂T

∂ρ

)

s

Ds′

Dt
+ ∇·(vρe)

]
(2.72)

where the “excess density” ρe is defined as:

ρe = ρ ′ − p′

c2
0

.

In a free jet the first term in −∂2ρe/∂t2 vanishes for an ideal gas with constant heat capacity (because

c2/c2
0 − 1 + ρe/ρ = 0). We see that sound is produced both by spatial density variations ∇·(vρe) and

as a result of non-isentropic processes (ρ2/c2
0)(∂T/∂ρ)s(Ds′/Dt), like combustion.

2.6.4 Vortex sound

While Lighthill’s analogy is very convenient for obtaining order of magnitude estimates of the sound

produced by various processes, this formulation is not very convenient when one considers the sound

production by a flow which is, on its turn, influenced by the acoustic field. In Lighthill’s procedure

the flow is assumed10 to be known, with any feedback from the acoustic field to the flow somehow

already included. When such a feedback is significant, and in general for homentropic low Mach

number flow, the aerodynamic formulation of Powell [181], Howe [81] and Doak [50] based on the

concept of vortex sound is most appropriate. This is due to the fact that the vorticity ω = ∇×v is a

very convenient quantity to describe a low Mach number flow.

Considering a homentropic non-conductive frictionless fluid, we start our derivation of a wave equa-

tion from Euler’s equation in Crocco’s form:

∂v

∂t
+ ∇ B = −ω×v (1.31)

where B = i + 1
2
v2, and the continuity equation:

1

ρ

Dρ

Dt
= −∇·v. (1.18)

Taking the divergence of (1.31) and the time derivative of (1.18) we obtain by subtraction:

∂

∂t

(
1

ρ

Dρ

Dt

)
− ∇2 B = ∇·(ω×v). (2.73)

10 This is not a necessary condition for the use of Lighthill’s analogy. It is the commonly used procedure in which we

derive information on the acoustic field from data on the flow in the source region.
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As the entropy is constant (ds = 0) we have, with (1.12) and (1.27):

∂

∂t

(
1

c2

Di

Dt

)
− ∇2 B = ∇·(ω×v). (2.74)

This can be rewritten as

1

c2

D2
0 B ′

Dt
− ∇2 B ′ = ∇·(ω×v)+ 1

c2

D2
0 B ′

Dt
− ∂

∂t

(
1

c2

Di

Dt

)
(2.75)

where B ′ = B − B0 and D0

Dt
= ∂

∂t
+ U0 ·∇. For the reference flow U0 we choose a potential flow with

stagnation enthalpy B0.

At low Mach number M = v/c0 we have the inhomogeneous wave equation:

1

c2
0

D2
0 B ′

Dt2
− ∇2 B ′ = ∇·(ω×v) (2.76)

which explicitly stresses the fact that the vorticity ω is responsible for the generation of sound. (Note:

i ′ = p′/ρ0 and B ′ = i ′ + v0 ·v′.) Some of the implications of (2.76) will be considered in more detail

in the next section. The use of a vortex sound formulation is particularly powerful when a simplified

vortex model is available for the flow considered. Examples of such flows are discussed by Howe [81],

Disselhorst & van Wijngaarden [49], Peters & Hirschberg [175], and Howe [86].

In free space for a compact source region Powell [180] has derived this analogy directly from Light-

hill’s analogy. The result is that the Coriolis force f c = ρ0(ω×v) appears to act as an external force

on the acoustic field. Considering Crocco’s equation (1.31) with this interpretation Howe [82, 85]

realized that the natural reference of the analogy is a potential flow rather than the quiescent fluid

of Lighthill’s analogy. There is then no need to assume free field conditions nor a compact source

region. Howe [81] therefore proposes to define the acoustic field as the unsteady scalar potential flow

component of the flow:

ua = ∇ϕ′

where ϕ′ = ϕ − ϕ0 and ϕ0 is the steady scalar potential.

At high Mach numbers, when the source is not compact, both Lighthill’s and Howe’s analogy become

less convenient. Alternative formulations have been proposed and are still being studied [153].

2.7 Acoustic energy

2.7.1 Introduction

Acoustic energy is a difficult concept because it involves second order terms in the perturbations like

the kinetic energy density 1
2
ρ0v

′2. Historically an energy conservation law was first derived by Kirch-

hoff for stagnant uniform fluids. He started from the linearized conservation laws (2.51a–2.51d). Such

a procedure is ad-hoc, and the result, an energy expression of the approximation, is not an approx-

imation of the total energy, since a small perturbation expansion of the full non-linear fluid energy

conservation law (1.6) will contain zeroth and first order terms and potentially relevant second order

terms O((ρ ′/ρ0)
2) which are dropped with the linearization of the mass and momentum equations.
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However, it appears that for a quiescent fluid these zeroth, first and neglected second order terms

are (in a sense) not important and an acoustic energy conservation equation may be derived which is

indeed the same as found by Kirchhoff [178].

This approach may be extended to non-uniform flows as long as they are homentropic and irrotational.

Things become much less obvious in the presence of a non-uniform mean flow including entropy

variations and vorticity. If required, the zeroth, first and neglected second order terms of the expansion

may still be ignored, as Myers showed [155], but now at the expense of a resulting energy equation

which is not a conservation law any more. The only way to obtain some kind of acoustic energy

conservation equation (implying definitions for acoustic energy density and flux) is to redirect certain

parts to the “right hand side” to become source or sink terms. In such a case the question of definition,

in particular which part of the field is to be called acoustic, is essential and until now it remains subject

of discussion.

As stated before, we will consider as acoustical only that part of the field which is related to density

variations and an unsteady (irrotational) potential flow. Pressure fluctuations related to vorticity, which

do not propagate, are often referred to in the literature as “pseudo sound”. In contrast to this approach

Jenvey [96] calls any pressure fluctuations “acoustic”, which of course results in a different definition

of acoustic energy.

The foregoing approach of generalized expressions for acoustic energy for homentropic [155] and

more general nonuniform flows [156, 157] by expanding the energy equation for small perturbations

is due to Myers. We will start our analysis with Kirchhoff’s equation for an inviscid non-conducting

fluid, and extend the results to those obtained by Myers. Finally we will consider a relationship

between vorticity and sound generation in a homentropic uniform inviscid non-conducting fluid at

low Mach numbers, derived by Howe [82].

2.7.2 Kirchhoff’s equation for quiescent fluids

We start from the linearized mass and momentum conservation laws for a quiescent inviscid and

non-conducting fluid:

∂ρ ′

∂t
+ ρ0∇·v′ = m ′, (2.77a)

ρ0

∂v′

∂t
+ ∇ p′ = f ′, (2.77b)

where we assumed that f ′ and m ′ are of acoustic order. Since we assumed the mean flow to be

quiescent and uniform there is no mean mass source (m0 = 0) or force ( f 0 = 0). From the assumption

of homentropy (ds = 0) we have11

p′ = c2
0ρ

′. (2.15)

After multiplying (2.77a) by p′/ρ0 and (2.77b) by v′, adding the two equations, and utilizing the

foregoing relation (2.15) between density and pressure, we obtain the equation

1

2ρ0c2
0

∂p′2

∂t
+ 1

2
ρ0

∂v′2

∂t
+ ∇·(p′v′) = p′m ′

ρ0

+ v′ · f ′ (2.78)

11Note that in order to keep equation (2.15) valid we have implicitly assumed that the injected mass corresponding to m′

has the same thermodynamic properties as the original fluid. The flow would otherwise not be homentropic! In this case

m′/ρ0 corresponds to the injected volume fraction β of equation (2.57).
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which can be interpreted as a conservation law for the acoustic energy

∂E

∂t
+ ∇· I = −D (2.79)

if we DEFINE the acoustic energy density E , the energy flux or intensity12 I and the dissipation D as:

E = p′2

2ρ0c2
0

+ ρ0v
′2

2
, (2.80a)

I = p′v′, (2.80b)

D = − p′m ′

ρ0

− v′ · f ′. (2.80c)

In integral form this conservation law (2.79) can be written for a fixed control volume V enclosed by

a surface S with outer normal n as

d

dt

∫∫∫

V

E dx +
∫∫

S

I ·n dσ = −
∫∫∫

V

D dx, (2.81)

where we have used the theorem of Gauss to transform
∫∫∫

∇· I dx into a surface integral. For a

periodic acoustic field the average 〈E〉 of the acoustic energy over a period is constant. Hence we find

P =
∫∫

S

〈I ·n〉 dσ = −
∫∫∫

V

〈D〉 dx, (2.82)

where P is the acoustic power flow across the volume surface S. The left-hand side of (2.82) simply

corresponds with the mechanical work performed by the volume injection (m ′/ρ0) and the external

force field f ′ on the acoustic field. This formula is useful because we can consider the effect of the

movement of solid boundaries like a piston or a propeller represented by source terms m ′ and f ′.
We will at the end of this chapter use formula (2.82) to calculate the acoustic power generated by a

compact vorticity field.

We will now derive the acoustic energy equation starting from the original nonlinear energy conser-

vation law (1.6). We consider the perturbation of a uniform quiescent fluid without mass source term

(v0 = 0, m = 0, f0 = 0, p0 and ρ0 constant). We start with equation (1.6) in standard conservation

form:

∂

∂t

(
ρe + 1

2
ρv2

)
+ ∇·

(
v
(
ρe + 1

2
ρv2 + p

))
= −∇·q + ∇·(τ ·v)+ f ·v, (2.83)

where we note that the total fluid energy density is

Etot = ρe + 1

2
ρv2, (2.84a)

and the total fluid energy flux is

I tot = v(ρe + 1

2
ρv2 + p). (2.84b)

12There is no uniformity in the nomenclature. Some authors define the acoustic intensity as the acoustic energy flux,

others as the time-averaged acoustic energy flux.
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We have dropped here the mass source term m because, in contrast to the force density f , it does not

correspond to any physical process.

For future reference we state here some related forms, a.o. related to the entropy variation of the fluid.

Using the continuity equation we obtain

ρ
D

Dt

(
e + v2

2

)
= −∇·(pv)− ∇·q + ∇·(τ ·v)+ f ·v, (2.85)

which by using the fundamental law of thermodynamics (1.8) may yield an equation for the change

in entropy s of the fluid:

ρT
Ds

Dt
− p

ρ

Dρ

Dt
+ ρ

2

Dv2

Dt
= −∇·(pv)− ∇·q + ∇·(τ ·v)+ f ·v. (2.86)

By subtraction of the inner product of the momentum conservation equation with the velocity, this

may be further recast into

ρT
Ds

Dt
= −∇·q + τ :∇v. (2.87)

In the absence of friction (τ = 0) and heat conduction (q = 0) we have the following equations for

energy and entropy:

ρ
D

Dt

(
e + 1

2
v2

)
= −∇·(pv)+ f ·v (2.88)

Ds

Dt
= 0. (2.89)

We return to the energy equation in standard conservation form, without friction and heat conduction:

∂

∂t

(
ρe + 1

2
ρv2

)
+ ∇·

(
v(ρe + 1

2
ρv2 + p)

)
= v · f . (2.90)

From the fundamental law of thermodynamics (1.8):

T ds = de + p d(ρ−1) (1.8)

we have for isentropic perturbations:

(
∂e

∂ρ

)

s

= p

ρ2
, and so

(
∂ρe

∂ρ

)

s

= e + p

ρ
= i,

(
∂2ρe

∂ρ2

)

s

= 1

ρ

(
∂p

∂ρ

)

s

= c2

ρ
,

where i is the enthalpy (1.26) or heat function. We can now expand the total energy density, energy

flux and source for acoustic (i.e. isentropic) perturbations up to second order, to find (v0 = 0):

ρe + 1
2
ρv2 = ρ0e0 + i0ρ

′ + 1
2
ρ0c0

2
(ρ ′

ρ0

)2

+ 1
2
ρ0v

′2, (2.91a)

v(ρe + 1
2
ρv2 + p) = v′(i0ρ0 + i0ρ

′ + p′), (2.91b)

v · f = v′ · f ′. (2.91c)

Noting that the steady state is constant, and using the equation of mass conservation

∂ρ ′

∂t
+ ∇·(ρ0v

′ + ρ ′v′) = 0
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in (2.90), with (2.91a–2.91c) substituted in it, we find that the zeroth and first order terms in ρ ′/ρ0

vanish so that (2.90) becomes within an accuracy of O((ρ ′/ρ0)
3):

∂

∂t

( p′2

2ρ0c2
0

+ ρ0v
′2

2

)
+ ∇·(p′v′) = v′ · f ′, (2.92)

which demonstrates that Kirchhoff’s acoustic energy conservation law (2.79) is not only an energy-

like relation of the approximate equations, but indeed also the consistent acoustic approximation of

the energy equation of the full fluid mechanical problem.

2.7.3 Acoustic energy in a non-uniform flow

The method of Myers [155] to develop a more general acoustic energy conservation law follows

similar lines as the discussion of the previous section. We consider a homentropic flow (ds = 0, so

that de = (p/ρ2)dρ) with v0 6= 0. In this case the total enthalpy B = e + p/ρ + 1
2
v2 appears to be a

convenient variable. In terms of B the energy conservation law (2.90) becomes:

∂

∂t
(ρB − p)+ ∇·(ρBv) = v · f . (2.93)

The momentum conservation law in Crocco’s form (1.31) also involves B:

∂v

∂t
+ ∇ B + ω×v = f /ρ. (2.94)

By subtracting ρ0v0 times the momentum conservation law (2.94) plus B0 times the continuity equa-

tion (1.18) from the energy conservation law (2.93), substituting the steady state momentum conser-

vation law:

∇ B0 + ω0×v0 = f 0/ρ0, (2.95)

subtracting the steady state limit of the resulting equation, and using the vector identity v ·(ω×v) = 0,

Myers obtained the following energy corollary:

∂

∂t
Eexact + ∇· I exact = −Dexact (2.96)

where Eexact, I exact and Dexact are defined by:

Eexact = ρ(B − B0)− (p − p0)− ρ0v0 ·(v − v0) (2.97a)

I exact = (ρv − ρ0v0)(B − B0) (2.97b)

Dexact = (ρv − ρ0v0)·(ω×v − ω0×v0)− (v − v0)·( f − f 0)

− (1 − ρ0/ρ)v0 · f − (1 − ρ/ρ0)v · f 0. (2.97c)

These auxiliary quantities Eexact, I exact and Dexact have the important property, as Myers showed, that

their zeroth and first order terms in the acoustic perturbation expansion in (ρ ′/ρ0) vanish, while the

quadratic terms are only a function of the mean flow and acoustic (first order) quantities. As a result,
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the second order approximation of the exact quantities Eexact, I exact and Dexact yield (for homentropic

flow) a general acoustic energy definition13:

E = c2
0ρ

′2

2ρ0

+ ρ0v
′2

2
+ ρ ′v0 ·v′ (2.98a)

I = (ρ0v
′ + ρ ′v0)

(c2
0ρ

′

ρ0

+ v0 ·v′
)

(2.98b)

D = −ρ0v0 ·(ω′×v′)− ρ ′v′ ·(ω0×v0)− (v′ + ρ ′v0/ρ0)·( f ′ − ρ ′ f 0/ρ0). (2.98c)

This equation is identical to the acoustic energy conservation law derived by Goldstein [70] starting

from the linearized equations of motion (with f 0 = 0). It is important to note that, on the one hand,

we have indeed obtained expressions entirely in first order quantities; on the other hand, however,

these expressions represent only an acoustic energy conservation law if we adopt the definition that

vorticity is non-acoustic and embodies possible acoustic sources or sinks. The present expressions for

homentropic flow are further generalized by Myers in recent papers [156] and [157].

2.7.4 Acoustic energy and vortex sound

Averaging (2.96) over one period for a periodic acoustic field and integrating over space yields, if

f = 0:

P =
∫∫

S

〈I ·n〉 dσ = −
∫∫∫

V

〈ρ0v0 ·(ω′×v′)+ ρ ′v′ ·(ω0×v0)〉 dx (2.99)

where P is the acoustic power generated by the flow. It is interesting to compare this expression with

the one derived by Howe [82] for a low Mach number compact vorticity distribution ω in free space

in the presence of compact solid surfaces:

P = −
∫∫∫

V

ρ0〈(ω×v)·ua〉 dx (2.100)

where ua is the acoustic velocity defined as the part of the unsteady velocity field v′ which is the

gradient of a potential (irrotational ∇×ua = 0). While (2.99) is not restricted to low Mach numbers it

only allows small time dependent perturbations ω′ of the time average vorticity ω0 and in this sense is

more restrictive than Howe’s formula. Furthermore, (2.99) is difficult to interpret physically because

v′ includes the solenoidal velocity perturbations ω′ = ∇×v′.

Howe’s equation (2.100) has a simple physical interpretation which in the same way as Lighthill’s

theory can be called an aero-acoustic analogy (vortex sound). In the absence of vorticity the flow of

an inviscid and non-conducting fluid is described by Bernoulli’s equation (1.32b):

∂ϕ

∂t
+ B = 0. (1.32b)

If in the same way as in Lighthill’s analogy14 we extend the potential flow v = ∇ϕ in a region where

vorticity is present (ω 6= 0) then we can think of the vorticity term (ω×v) in Crocco’s equation:

∂v

∂t
+ ∇ B = −ω×v (1.28)

13Use the vector identity a·(b×c) = −c·(b×a).
14In Lighthill’s analogy the uniform quiescent fluid at the listener is extended into the source region.
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equivalent to an external force field f acting on the potential flow (acoustic field). Hence we have:

f = −ρ(ω×v) (2.101)

which is the density of the Coriolis force acting on the fluid particle as a result of the fluid rotation. For

a compact region at low Mach numbers we can neglect density variation and use the approximation:

f = −ρ0(ω×v). (2.102)

In the absence of mean flow outside the source region we see by application of the integral form of

Kirchhoff’s energy equation (2.82) that we recover Howe’s formula (2.100):

P =
∫∫∫

V

〈 f ·ua〉 dx. (2.103)

This could also have been deduced from a comparison of the wave equation (2.76) in which we

introduced the approximation B ′ = i ′ = p′/ρ0 because v0 = 0:

1

c2
0

∂2 p′

∂t2
− ∇2 p′ = ρ0∇·(ω×v) (2.104)

and the wave equation (2.61) (without mass injection, m = 0):

1

c2
0

∂2 p′

∂t2
− ∇2 p′ = −∇· f . (2.105)

This corresponds to Powell’s approximation of the vortex sound theory in which we neglect terms of

order M both in the wave region and in the source region (B ′ = p′/ρ0).

In the presence of a uniform flow outside the source region, Goldstein [70] finds the wave equation:

1

c2
0

D2
0 p′

Dt2
− ∇2 p′ = −∇· f (2.106)

where

D0

Dt
= ∂

∂t
+ v0 ·∇.

The energy equation corresponding to (2.106) is for f 0 = 0:

P =
∫∫∫

V

〈(
ua + ρ ′

ρ0

v0

)
· f

〉
dx (2.107)

which suggests a generalization of Howe’s equation with f = ρ0(ω×v):

P = −ρ0

∫∫∫

V

〈
(ω×v)·

(
ua + ρ ′

ρ0

v0

)〉
dx, (2.108)

which corresponds with the use of B ′ = p′/ρ0 + ua ·v0 as acoustical variable, and I = B ′(ρv)′ as the

intensity with (ρv)′ = ρ0ua + ρ ′v0 the fluctuation of mass flux.
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This generalization of Howe’s equation is indeed derived by Jenvey [96]. Although the above discus-

sion provides an intuitive interpretation of Jenvey’s result, it is not obvious that Jenvey’s definition of

acoustic field agrees with Howe’s definition. The range of validity of this energy corollary is therefore

not obvious.

In practice Howe’s energy corollary is convenient because it is formulated by an integral. Similar to

Lighthill’s analogy in integral form, it is not sensitive to “random errors” in the model. Integration

over the volume and averaging over a period of oscillation smooths out such errors.

Exercises

a) Calculate the minimum speed of sound of air/water mixtures at a depth of 100 m below sea surface.

Assume a temperature T0 = 300 K. Is it true that this speed of sound is independent of the gas as long as

γ = Cp/CV is the same?

b) Derive (2.93) from (2.90).

c) Is the choice of c0 in the analogy of Lighthill arbitrary?

d) Does the acoustic source ∂2

∂t2 (p′/c2
0 − ρ′) vanish for isentropic flows?

e) Is the acoustic variable ρ′ the most convenient choice to describe the sound production by unsteady

combustion at low Mach numbers?

f) Is the definition of acoustic intensity I = p′v′ valid in the presence of a mean flow?

g) Is it correct that when using B ′ as acoustic variable instead of p′, one obtains a more accurate prediction

of vortex sound in a compact region with locally a high Mach number?

h) Is the equation p′ = c2
0ρ

′ always valid in a stagnant fluid?

i) Is it correct that the acoustic impedance ρc of an ideal gas depends only on the pressure p?

j) Show that the surface of constant phase ωt − k·x = constant, of plane wave solution (2.22), is planar,

even if ω is complex.

k) Show that Kirchhoff’s energy definition (2.80) remains valid for the conditions pertaining to (2.49).
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3.1 Green’s functions

3.1.1 Integral representations

Using Green’s theorem we can construct an integral equation which combines the effect of sources,

propagation, boundary conditions and initial conditions in a simple formula. The Green’s function

G(x, t|y, τ ) is the pulse response of the wave equation:

∂2G

∂t2
− c2

0

∂2G

∂x2
i

= δ(x − y)δ(t − τ). (3.1)

Note that the Green’s function is a generalized function! (See Appendix C.) The pulse δ(x− y)δ(t −τ)
is released at the source point y at time τ and G is measured at the observation point x at time t . The

definition of G is further completed by specifying suitable boundary conditions at a surface S with

outer normal n enclosing the volume V in which x and y are localized:

n·∇G + bG = 0. (3.2)

Furthermore, one usually assumes a causality condition for G that there is no field other than due to

the δ-source:

G(x, t|y, τ ) = 0 and
∂

∂t
G(x, t|y, τ ) = 0 (3.3)

for t < τ . When the boundary conditions defining the Green’s function coincide with those of the

physical problem considered the Green’s function is called a “tailored” Green’s function. The integral

equation is in such a case a convolution of the source q(y, τ ) with the pulse response G(x, t|y, τ ). Of

course, if the source q is known (and not dependent on the field) this integral equation is at the same

time just the solution of the problem. A tailored Green’s function is, in general, not easy to find. It

will, therefore, appear that sometimes, for certain specific problems, the choice of a Green’s function

which is not tailored is more convenient.

Before we can discuss this, we have to consider some general properties of Green’s functions, such as

the important reciprocity relation:

G(x, t|y, τ ) = G(y,−τ |x,−t). (3.4)

For the free field this relation follows immediately from symmetry and causality. In general [147],

this property can be derived by starting from the definition of the two Green’s functions G1 =
G(x, t|y1, τ1) and G2 = G(x,−t|y2,−τ2):

∂2G1

∂t2
− c2

0

∂2G1

∂x2
i

= δ(x − y1)δ(t − τ1) (3.5a)
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and
∂2G2

∂t2
− c2

0

∂2G2

∂x2
i

= δ(x − y2)δ(t − τ2). (3.5b)

Multiplying (3.5a) by G2 and subtracting (3.5b) multiplied by G1 yields after integration over x and t

in V from t = −∞ until a time t ′ larger than τ1 and τ2:

∫ t ′

−∞

∫∫∫

V

{[
G2

∂2G1

∂t2
− G1

∂2G2

∂t2

]
− c2

0

[
G2

∂2G1

∂x2
i

− G1

∂2G2

∂x2
i

]}
dx dt

= G(y1,−τ1|y2,−τ2) − G(y2, τ2|y1, τ1). (3.6)

Partial integration of the left-hand side yields:

∫∫∫

V

[
G2

∂G1

∂t
− G1

∂G2

∂t

]
dx

∣∣∣∣
t=t ′

t=−∞
− c2

0

∫ t ′

−∞

∫∫

S

[
G2

∂G1

∂xi

− G1

∂G2

∂xi

]
ni dσdt = 0 (3.7)

where the first integral vanishes because for t = −∞ both G1 and G2 vanish because of the causality

condition (3.3). At t = t ′ the first integral vanishes because −t ′ is earlier than −τ2 (t ′ > τ2) and

therefore both G2 = G(x,−t ′|y2,−τ2) = 0 and ∂G2/∂t|t=t ′ = 0 because of causality. The second

integral vanishes because G1 and G2 satisfy the same boundary conditions on boundary S. Replacing

y1 and τ1 by y and τ and y2 and τ2 by x and t in the right-hand side of (3.6) yields (3.4).

We now will prove that the Green’s function G(x, t|y, τ ) also satisfies the equation:

∂2G

∂τ 2
− c2

0

∂2G

∂y2
i

= δ(x − y)δ(t − τ). (3.8)

We first note that because of the symmetry of δ(t − τ) the time-reversed function G(x,−t|y,−τ)
satisfies (3.1):

∂2

∂t2
G(x,−t|y,−τ)− c2

0

∂2

∂x2
i

G(x,−t|y,−τ) = δ(x − y)δ(t − τ). (3.9)

Using now the reciprocity relation (3.4) and interchanging the notation x ↔ y and t ↔ τ we find

(3.8).

We have now all that is necessary to obtain a formal solution to the wave equation:

∂2ρ ′

∂τ 2
− c2

0

∂2ρ ′

∂y2
i

= q(y, τ ). (3.10)

After subtracting equation 3.8, multiplied by ρ ′(y, τ ), from equation (3.10), multiplied by G(x, t|y, τ ),
and then integration to y over V and to τ between +t0 and t , we obtain:

ρ ′(x, t) =
∫ t+

t0

∫∫∫

V

q(y, τ )G(x, t|y, τ ) d ydτ+
∫ t+

t0

∫∫∫

V

[
ρ ′(y, τ )

∂2G

∂τ 2
−G

∂2ρ ′(y, τ )
∂τ 2

]
d ydτ

− c2
0

∫ t+

t0

∫∫∫

V

[
ρ ′(y, τ )

∂2G

∂y2
i

− G
∂2ρ ′(y, τ )

∂y2
i

]
d ydτ. (3.11)
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Partial integration over the time of the second integral and over the space of the third integral in the

right-hand side of (3.11) yields:

ρ ′(x, t) =
∫ t

t0

∫∫∫

V

q(y, τ )G(x, t|y, τ ) d ydτ−c2
0

∫ t

t0

∫∫

S

[
ρ ′(y, τ )

∂G

∂yi

−G
∂ρ ′(y, τ )
∂yi

]
ni dσdτ

−




∫∫∫

V

[
ρ ′(y, τ )

∂G

∂τ
− G

∂ρ ′(y, τ )
∂τ

]
d y



τ=t0

(3.12)

where the second integral vanishes for a tailored Green’s function and the third integral represents the

effect of the initial conditions at τ = t0. For a tailored Green’s function, and if t0 = −∞, we have the

superposition principle over elementary sources which we expect intuitively:

ρ ′(x, t) =
∫ t

−∞

∫∫∫

V

q(y, τ )G(x, t|y, τ ) d ydτ. (3.13)

In chapter 4 and 6 we will again reconsider the Green’s functions in more detail. For the present time

we should remember that (3.12) or (3.13) is only an explicit solution of the wave equation if q is given.

When the sound source q depends on the acoustic field ρ ′ these equations are integral equations rather

than an explicit solution.

Even in such a case the integral representation is useful because we have split up the problem into

a purely linear problem of finding a Green’s function and a second problem of solving an integral

equation. Also as stated earlier the integral equation is most convenient for introducing approximations

because integration tends to smooth out the errors of the approximations.

The treatment given here is taken from the textbook of Morse and Feshbach [147]. An integral for-

mula for the convective wave equation (2.52) and the corresponding Green’s function and integral

formulation are found in Goldstein [70].

3.1.2 Remarks on finding Green’s functions

In general, a (tailored) Green’s function is only marginally easier to find than the full solution of

an inhomogeneous linear partial differential equation. Therefore, it is not possible to give a general

recipe how to find a Green’s function for a given problem. Sometimes an expansion in eigenfunction

or modes (like in duct acoustics; see chapter 7) is possible.

It is, however, important to note that very often we can simplify a problem already, for example by

integral representations as above, by using free field Green’s functions, i.e. the Green’s function of

the problem without the usually complicating boundaries. If the medium is uniform in all directions,

the only independent variables are the distance to the source |x − y| and time lag t − τ . Furthermore,

the delta-function source may be rendered into a more easily treated form by spatial Fourier trans-

formation. Examples are given in Appendix C.2.7 and section 4.6, while a table is given in Appendix

E.
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3.2 Acoustic impedance

A useful quantity in acoustics is impedance. It is a measure of the amount by which the motion induced

by a pressure applied to a surface is impeded. Or in other words: a measure of the lumpiness of the

surface. Since frictional forces are, by and large, proportional to velocity, a natural choice for this

measure is the ratio between pressure and velocity1. A quantity, however, that would vary with time,

and depend on the initial values of the signal is not very interesting. Therefore, impedance is defined

via the Fourier transformed signal as:

Z(x;ω) = p̂(x;ω)
v̂(x;ω)·nS(x)

(3.14)

at a point x on a surface S with unit normal vector nS pointing into2 the surface. The impedance is a

complex number and a function of ω and position. The real part is called the resistance, the imaginary

part is called the reactance, and its inverse 1/Z is called the admittance.

In the most general situation the ratio Z = p̂/(v̂ ·nS) is just a number, with a limited relevance.

We cannot consider the impedance Z as a property of the surface S, because Z depends also on the

acoustic field. However, this is not the case for the class of so-called locally reacting linear surfaces.

The response of such a surface to an acoustic wave is linear and pointwise, with the result that the

impedance is indeed the same for any solution, and therefore a property of the surface alone.

Mathematically it is important to note that an impedance boundary condition is of “mixed type”. Via

the general Green’s function representation

p̂ =
∫∫

S

(
p̂∇G + ikρ0c0v̂G

)
·nS dσ (3.15a)

the Helmholtz equation reduces to an integral equation in p̂ if surface S has an impedance Z :

p̂ =
∫∫

S

(
∇G ·nS + ikρ0c0

Z
G

)
p̂ dσ. (3.15b)

Sometimes it is instructive to describe the coupling between two adjacent regions of an acoustic field

by means of an equivalent impedance. Suppose we place between these regions (say, region 1 and

region 2) a fictitious interface, with an impedance such, that the presence of the surface would generate

the same sound field in region 1 as there exists without surface. In that case we could say that the effect

of region 2 onto region 1 is described by this impedance.

For example, a free field plane wave eiωt−ikx , with k = ω/c0 and satisfying iωρ0v + ∇ p = 0, would

not be reflected by a screen, positioned parallel to the y, z-plane, if this screen has the impedance

Z = ρ0c0. So for plane waves and in the far field (where the waves become approximately plane) the

fluid may be said to have the impedance ρ0c0. This inherent impedance of the fluid is used to make Z

dimensionless leading to the specific impedance Z/ρ0c0.

1In mechanics, impedance denotes originally the ratio between a force amplitude and a velocity amplitude. In some

texts, the ratio acoustic pressure/velocity is therefore called “impedance per area” or specific impedance. We reserve the

nomenclature “specific impedance” to the (dimensionless) ratio of the impedance and the fluid impedance ρ0c0.
2Note that usually the normal vector of a surface is defined out of the surface.
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Many other examples are found in 1-dimensional (pipe-) models of acoustic systems where local 3-

dimensional behaviour is “packed” in an effective impedance. It may be worthwhile to note that for

such models many authors find it convenient to divide Z by the surface S of the pipe cross section.

In such a case the impedance is the ratio of the acoustic pressure p̂ and the volume flux (û·n)S
leaving the control volume. The one-dimensional approach then allows the use of all mathematical

tools developed for electrical circuits if we assume p̂ to be the equivalent of the electric voltage,

(û·n)S the equivalent of the electric current, and a tube to correspond to a transmission line. Further,

a compact volume is the equivalent of a capacity, and a compact orifice is a self induction. The pressure

difference is in linear approximation due to the inertia of the air in the orifice and hence proportional

to the acceleration (∂/∂t)(û·n) (section 4.4.3).

3.2.1 Impedance and acoustic energy

For a quiescent fluid the acoustic power flow (2.82) across S for a time-harmonic field ∼ eiωt is

P =
∫∫

S

ω

2π

2π/ω∫

0

Re
(

p̂ eiωt
)

Re
(
(v̂ ·nS) eiωt

)
dt dσ

=
∫∫

S

1

4
( p̂v̂

∗ + p̂∗v̂)·nS dσ (3.16a)

=
∫∫

S

1

2
Re( p̂∗v̂ ·nS) dσ, (3.16b)

where z∗ denotes the complex conjugate of z. If the surface has an impedance Z , the power becomes

P =
∫∫

S

1

2
Re(Z)|v̂ ·nS|2 dσ. (3.17)

Hence, the real part of the impedance (the resistance) is related to the energy flow: if Re(Z) > 0 (for

ω ∈ R), the surface is passive and absorbs energy; if Re(Z) < 0, it is active and produces energy.

3.2.2 Impedance and reflection coefficient

If we consider the acoustic field for x < 0 in a tube at low frequencies, we can write

p(x, t) = p̂(x) eiωt = p+ eiωt−ikx +p− eiωt+ikx (3.18)

where k = ω/c0, p+ is the amplitude of the wave incident at x = 0 from x < 0 and p− is the amp-

litude of the wave reflected at x = 0 by an impedance Z . Using the linearized momentum conservation

law ρ0(∂v/∂t) = −∂p/∂x we find:

v̂(x) = 1

ρ0c0

(
p+ e−ikx −p− eikx

)
. (3.19)

If we define the reflection coefficient R at x = 0 as:

R = p−/p+ (3.20)
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we see that because Z = p̂(0)/v̂(0) :

R = Z − ρ0c0

Z + ρ0c0

. (3.21)

In two dimensions we have a similar result. Consider a plane wave (amplitude p+), propagating in the

direction (cosϑ, sinϑ) where ϑ is the angle with the positive x-axis (c.f. Fig. 3.6), and approaching

from y < 0 an impedance wall at y = 0. Here it reflects into a wave (amplitude p−) propagating in

the direction (cosϑ,− sinϑ). The pressure field is given by

p̂(x, y) = e−ikx cosϑ
(

p+ e−iky sinϑ +p− eiky sinϑ
)
. (3.22)

The y-component of the velocity is

v̂(x, y) = sinϑ

ρ0c0

e−ikx cosϑ
(

p+ e−iky sinϑ −p− eiky sinϑ
)
, (3.23)

so we have for the impedance

Z = p̂(x, 0)

v̂(x, 0)
= ρ0c0

sin ϑ

p+ + p−

p+ − p− = ρ0c0

sinϑ

1 + R

1 − R
, (3.24)

and for the reflection coefficient

R = Z sin ϑ − ρ0c0

Z sin ϑ + ρ0c0

. (3.25)

The impedance with no reflection (of a plane surface) is thus Z = ρ0c0/ sinϑ .

3.2.3 Impedance and causality

In order to obtain a causal solution of a problem defined by boundary conditions expressed in terms

of an impedance Z , the impedance should have a particular form.

Consider an arbitrary plane wave pi = f (t − x/c0) incident from x < 0, and reflecting into pr =
g(t + x/c0) by an impedance wall at x = 0, with impedance Z(ω). The total acoustic field is given

for x < 0 by:

p(x, t) = f (t − x/c0)+ g(t + x/c0), (3.26a)

v(x, t) = 1

ρ0c0

(
f (t − x/c0)− g(t + x/c0)

)
. (3.26b)

The reflected wave g is determined via the impedance condition, and therefore via the Fourier trans-

forms of the p and v. As we have seen above (equation 3.21), we have for the Fourier transforms f̂

and ĝ:

ĝ(ω) = Z(ω)− ρ0c0

Z(ω)+ ρ0c0

f̂ (ω). (3.27)
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More information can be obtained, however, if we transform the boundary condition back to the time

domain

p(0, t) =
∫ ∞

−∞
p̂(0, ω) eiωt dω (3.28a)

=
∫ ∞

−∞
Z(ω)v̂(0, ω) eiωt dω (3.28b)

leading to the convolution product:

p(0, t) = 1

2π

∫ ∞

−∞
z(t − τ)v(0, τ ) dτ (3.29)

where

z(t) =
∫ ∞

−∞
Z(ω) eiωt dω. (3.30)

Since p(0, t) should only depend on the values of v(0, t) of the past (τ < t), the Fourier transform

z(t) of the impedance Z(ω) has to satisfy the causality condition:

z(t) = 0 for t < 0. (3.31)

Of course, the same applies to the admittance 1/Z(ω), when we express v(0, t) in p(0, t). This re-

quires, under conditions as given in theorem (C.1) (p.232),

Z(ω) and 1/Z(ω) are analytic in Im(ω) < 0. (3.32)

Furthermore, since both p and v are real, z has to be real, which implies that Z has to satisfy the

reality condition:

Z∗(ω) = Z(−ω) for ω ∈ R. (3.33)

Indeed, the mass-spring-damper system, given by

Z(ω) = R + iωm − i K/ω, (3.34)

satisfies the reality condition if all parameters are real, but is only causal, with zeros and poles in the

upper complex half plane, if all parameters are positive or zero.

Equation (3.29) yields an integral equation for g if we use equations (3.26a) and (3.26b) to eliminate

p and v:

f (t)+ g(t) = 1

2πρ0c0

∫ ∞

−∞
z(t − τ)

(
f (τ )− g(τ )

)
dτ. (3.35)

For any incident wave starting at some finite time (t = 0) we have f (t) = 0 for t < 0, so that all in

all the infinite integral reduces to an integration over the interval [0, t]:

f (t)+ g(t) = 1

2πρ0c0

∫ t

0

z(t − τ)
(

f (τ )− g(τ )
)

dτ. (3.36)

For any time t , g(t) is built up from f (t) and the history of f and g along [0, t].
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As an example, consider an impedance wall of Helmholtz resonator type which is widely used in turbo

fan aircraft engine inlets [196]. Such a wall is described (see next chapter) by:

Z(ω) = ρ0c0

(
R + iωm − i cot

(
ωL
c0

))
. (3.37)

where R,m, L > 0. Note that indeed Z∗(ω) = Z(−ω). If we write ωL
c0

= ξ − iη and c0m

L
= α, then

Re
( Z

ρ0c0

)
= R + αη + coth(η)

1 + cot(ξ)2

cot(ξ)2 + coth(η)2
> 0

for η > 0, so Z is free from zeros in Im(ω) < 0. From the causality condition it follows that the poles

of cotg(ωL
c0
) belong to the upper half of the complex ω-plane. Hence, we can Fourier transform Z back

to the time domain (C.34) to find:

z(t)

2πρ0c0

= Rδ(t)+ mδ′(t)+ δ(t)+ 2

∞∑

n=1

δ
(
t − 2nL

c0

)
(3.38)

where δ′(t) denotes the derivative of δ(t). Substitution of (3.38) in (3.36) shows that g can be ex-

pressed as a finite sum.

For certain parameter ranges the effect of viscous friction in the resonator neck (c.f. 2.13, 4.77) may

be included by a term like
√

iων; for example [204, 142]

Z(ω) = ρ0c0

(
b
√

iω + R + iωm − i cot
(
ωL
c0

))
. (3.39)

where b > 0. Since the complex square root function is subtle, it has to be emphasised that the square

root, in the form as used here, should be the ordinary (principal value) square root. With a branch

cut along the negative real axis for
√· , the branch cut of

√
iω is then along the positive imaginary

ω-axis, yielding a function analytic in Im(ω) < 0. In particular,
√

iω should not be simplified to
1
2

√
2(1 + i)

√
ω, unless the branch cut of

√
ω is rotated to the positive imaginary axis, which is of

course in actual practice an intricate operation and prone to errors and confusion3 .

Moreover, with (
√

iω)∗ =
√

−iω (for ω ∈ R) also the reality condition is satisfied, while Z is still

free from zeros in Im(ω) < 0, since Re(
√

iω) ∼ Re(
√
η + iξ) > 0 for η > 0 (see above). Fourier

transformed back into time domain we have the causal (generalised) function

∫ ∞

−∞

√
iω eiωt dω = 2

√
π

d

dt

( H (t)√
t

)
.

3.2.4 Impedance and surface waves

Part of sound that is scattered by an impedance wall may be confined to a thin layer near the wall,

and behave like a surface wave [23, 251, 51, 162, 7, 187, 47, 229, 246, 201, 4], similar to the type of

evanescent waves discussed in section 3.3. Examples of these type of solutions are found as irregular

modes in lined ducts (section 7.4), or as sound that propagates with less than the usual 1/r2-decay

along an acoustically coated surface.

3In [204] it was too hastily concluded that
√
ω is not admissible in a physically possible impedance representation [142].

If (1 + i)
√
ω is interpreted as

√
2iω with branch cut as described, it is possible.
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Figure 3.1 Trajectories of α for varying Z = R + i X (no flow).

Fixed R & X = 0:−0.1:−∞ . Fixed X & R = 0:0.1:∞ .

Consider in (x, y)-space, y > 0, a harmonic pressure field p(x, y) e iωt , satisfying

∇2 p + k2 p = 0, with ik p(x, 0) = Z ∂
∂y

p(x, 0)

where Z denotes the specific impedance (scaled on ρ0c0) of the wall y = 0, and k = ω/c0. Suitable

solutions are

p(x, y) = A e−(ikαx±ikγ y), γ (α) =
√

1 − α2

where α is to be determined. The solutions we are interested in remain restricted to the wall, which

means that ± Im(γ ) 6 0. The sign of γ depends of course on our definition of the square root. In order

to have one and the same expression for all α, i.e. ∝ e−(ikαx+ikγ y), it is therefore most convenient to

select the branch and branch cuts of γ such that Im(γ ) 6 0 everywhere (see equation 3.52 and figure

3.5). From the boundary condition it follows that the only solutions that can occur have to satisfy

γ (α) = −Z−1.

It follows that the only impedances that may bear a surface wave have to satisfy

Im(Z) 6 0.

The complex values of scaled wave number α, corresponding to these solutions, are given by

α = ±
√

1 − Z−2. (3.40)

Trajectories of these wave numbers, as function of Z , are plotted in figure 3.1. To include all complex

values of Z , we have drawn two fan-shaped families of curves: one for fixed Re(Z) and one for

fixed Im(Z). Note that un-attenuated waves occur for purely imaginary Z . The thickness of the layer

occupied by the wave is of the order y = O(λ| Im(Z)|), where λ = 2π/k, the free field wave length.
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3.2.5 Acoustic boundary condition in the presence of mean flow

The boundary condition to describe a vibrating impermeable wall is that the fluid particles follow the

wall motion. In linearized form it is applied at the wall’s mean or unperturbed position. Without mean

flow, the linearized condition simply says that acoustic and wall’s normal velocity match.

With mean flow the situation is more subtle. Both the actual normal vector and the mean flow velocity

at the actual position differ from the mean values by an amount of acoustic order, which has to be

taken into account. This was recognized by several authors for various special cases. Myers gave in

[154] the most general formulation, which we will summarize here.

Consider the unsteady surface S(t), which is a perturbation, scaling on a small parameter ε, of the

steady surface S0. Associate to S0 an orthogonal curvilinear co-ordinate system (α, β, γ ) such that

α = 0 corresponds to S0. The mean flow v0 is tangent to the steady surface (section A.3), so

v0 ·∇α = 0 at α = 0.

Let S(t) be described, to leading order, by

α = εg(β, γ, t)+ O(ε2).

The condition of fluid particles following the surface S(t) becomes

∂

∂t
(α − εg)+ (v0 + εv′)·∇(α − εg) = O(ε2) at α = εg,

where εv′ is the acoustic velocity. The linearization we seek is the acoustic order, i.e. O(ε) when

ε → 0. This appears to be [154]

v′ ·n =
( ∂
∂t

+ v0 ·∇ − n·(n·∇v0)
) g

|∇α| at α = 0, (3.41)

where n is the normal of S0, directed away from S0 into the fluid.

An important application of this result is an impedance wall (section 3.2) with inviscid mean flow.

This can be found, for example, in the lined inlet duct of a turbo fan aircraft jet engine. The steady

surface S0 coincides with the impedance wall; the unsteady surface S(t) is the position of a (fictitious)

vortex sheet, modelling the boundary layer.

Since a vortex sheet cannot support a pressure difference, the pressure at the wall is the same as near

the wall in the flow. If the wall has an impedance Z 6= 0 for harmonic perturbations ∼ eiωt (see 3.14),

the velocity and therefore the position g of S(t) is known in terms of the pressure:

g = − 1

iωZ

(
|∇α|p

)
α=0
.

In the mean flow, the impedance wall is now felt as

v′ ·nS =
(

iω + v0 ·∇ − nS ·(nS ·∇v0)
) p

iωZ
at S0. (3.42)

As is usual, the normal vector nS of S0 is now selected to be directed into the wall. If Z ≡ 0, the

boundary condition is just p = 0. For uniform mean flow along a plane wall (3.42) simplifies to

v′ ·nS =
(

iω + v0 ·∇
) p

iωZ
, (3.43)
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a result, obtained earlier by Ingard [92]. An application of this generalized boundary condition (3.42)

may be found in [197, 199].

Of practical interest are the following observations. As the mean flow field is tangential to the wall, so

v0 ·nS = 0, the following simplification may be derived

−nS ·(nS ·∇v0) = v0 ·(nS ·∇nS),

i.e. the expression does not really involve derivatives of v0. (Incidentally, the vector nS ·∇nS is tan-

gential to the surface.) Furthermore, since ∇·(ρ0v0) = 0, we may multiply left and right hand side of

(3.42) by ρ0 and obtain the form

ρ0v
′ ·nS = ρ0 p

Z
+

(
∇ + nS ·∇nS

)·(ρ0v0 p

iωZ

)
. (3.44)

The last part between brackets may be further simplified to the following two forms (c.f. [141, 58])

(
∇ + nS ·∇nS

)·(ρ0v0 p

iωZ

)
= nS ·∇×

(
nS×

ρ0v0 p

iωZ

)
, (3.45a)

= 1

hσ

∂

∂τ

(
hσ
ρ0v0 p

iωZ

)
, (3.45b)

where v0 = |v0| and a local orthogonal coordinate system (τ, σ, ν) is introduced associated to the wall.

Coordinate ν is related to the wall normal vector n, coordinate τ is the arclength along a streamline of

v0, and σ is orthogonal to τ in the wall surface. hσ is a scale factor of σ , defined by h2
σ = ( ∂

∂σ
x)2 +

( ∂
∂σ

y)2 + ( ∂
∂σ

z)2. Note that (3.45b) involves no more than a derivative in streamwise direction.

3.2.6 Surface waves along an impedance wall with mean flow

Consider in (x, y)-space, y > 0, a uniform mean flow in x-direction with Mach number M , and a

harmonic field ∼ eiωt satisfying (see equation 2.52)

(
ik + M

∂

∂x

)2
p −

( ∂2

∂x2
+ ∂2

∂y2

)
p = 0

(
ik + M

∂

∂x

)
v + ∇ p = 0

where k = ω/c0. Pressure p is made dimensionless on ρ0c2
0 and velocity v on c0. At y = 0 we have

an impedance boundary condition given by (see equation 3.42)

ik Zv = −
(

ik + M
∂

∂x

)
p

where Z denotes the constant specific wall impedance and v the vertical velocity.

Solutions that decay for y → ∞ are of the type discussed in section 3.3

p(x, y) = A e−ikαx−ikŴy .

From the equations and boundary condition it follows that

(1 − αM)2 + ŴZ = 0, α2 + Ŵ2 = (1 − αM)2.
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For further analysis it is convenient to introduce the Lorentz or Prandtl-Glauert type transformation

(see 7.42 and section 9.1.1),

β =
√

1 − M2, σ = M + β2α, γ = βŴ, γ =
√

1 − σ 2 (3.46)

with the branch and branch cuts of γ (σ ) selected such that Im(γ ) 6 0 (see equation 3.52 and figure

3.5).

As a result (see [195, 201]) we have the equation for the reduced axial complex wave number σ as a

function of Z

(1 − Mσ )2 + β3γ (σ )Z = 0 (3.47)

By squaring we obtain a 4-th order polynomial equation with 4 complex roots. So in our problem

we have at most 4 solutions. To investigate the occurrence of these solutions, we analyse in detail

the behaviour of possible solutions σ along the branch cuts of γ , because it is there where possible

solutions may appear from or disappear to the second Riemann sheet of γ . From a careful analysis

(see [195, 201]) it appears that in the Z -plane there are 5 distinct regions with 0, 1, 2, 3, and 4 solutions

σ , while in the σ -plane we can identify an egg-shaped area, of radius ≃ M−1, inside and outside of

which we have 4 regions where solutions σ may occur. See the figures 3.2, 3.3, and figure 3.4.

Inside the egg we have acoustic surface waves (a right-running σS R and a left-running σS L). Outside

the egg we have hydrodynamic modes (they disappear to infinity with vanishing Mach number) σH S

and σH I , probably both right-running, such that σH S is decaying (stable) and σH I is increasing (un-

stable). This unstable behaviour depends on the frequency-dependence of Z , and can be proven for an

impedance of mass-spring-damper type (3.34) in the incompressible limit [195, 201, 205].
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Thick lines map to the branch cuts in figure 3.3. In the figure M = 0.5 is taken.
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Figure 3.4 Trajectories of σ for varying Z = R + i X and M = 0.5.

Fixed R & X = −∞:0.2:∞ . Fixed X & R = 0:0.2:∞ .

In the limit for hard walls, i.e. for |Z | → ∞ while Im Z < 0, the hydrodynamic surface waves

σH I and σH S disappear to infinity while the acoustic surface waves σS R and σS L approach ±1 in the

following way

σH I , σH S ≃ ±i
β3

M2
Z , σS R, σS L ≃ ±1 ∓ (1 ∓ M)4

2Z2β6
. (3.48)
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3.2.7 Instability, ill-posedness, and a regularization

Although the Ingard-Myers limit of a vanishing mean flow boundary layer is very reasonable for a

fixed frequency, with all pertaining wavelengths being much longer than the boundary layer thickness,

it is totally useless [22, 20] in time domain [204].

The problem is that if we gradually reduce the boundary layer, one of the above hydrodynamic surface

waves changes from a convective instability (a positive growth rate for at least part of the wave number

spectrum but always with a group velocity directed downstream) to an absolute instability (positive,

0, and negative group velocities yielding unstable behaviour everywhere) [205]. At the same time the

growth rate increases until it becomes infinite in the Ingard-Myers limit of a vanishing boundary layer.

This implies that in time domain, any perturbation excites in zero time an infinitely large instability.

A model or mathematical problem with this property is called ill-posed.

The (presumably) convective instability has been observed experimentally [8], but the absolute in-

stability probably only numerically [31]. The reason appears to be [205] that the critical boundary

layer thickness, where the instability of the system changes from convective to absolute, is in any

practical situation so small (several microns) that is has never been realised.

One way to cure this problem of the Ingard-Myers model is to regularise the boundary condition by

including the effect of a boundary layer of very thin but non-zero thickness h. For example like in

[205] for a flat lined wall of uniform dimensional impedance Z(ω) and a mean flow v0 = U∞ex

Z(ω) =

(
iω + U∞

∂

∂x

)
p′ − hρ0iω

(
2
3
iω + 1

3
U∞

∂

∂x

)
(v′ ·nS)

iω(v′ ·nS)+ h

ρ0

∂2

∂x2
p′ − 1

3
hiω

∂

∂nS

(v′ ·nS)

. (3.49)

which is to be compared with (3.43). By selecting a boundary layer thicker than the critical thickness

(this depends on the assumed liner model), we can guarantee a well-posed model. For a mass-spring-

damper liner (3.34) this was found to be

hc ≃ 1

4

(
ρ0U∞

R

)2

U∞

√
m

K
. (3.50)

Another form, for circumferential modes in circular ducts, has been proposed by Brambley [21], but

without estimate for a sufficient thickness of the boundary layer.

3.3 Evanescent waves and related behaviour

3.3.1 An important complex square root

The wave equation in 2-D has the very important property that a disturbance of (positive) frequency ω

and (real) wave number α in (say) x-direction is only radiating sound if frequency and wave number

satisfy the inequality

|α| < ω/c0

(a similar inequality holds in 3-D). Outside this regime the generated disturbances are exponentially

decaying (evanescent) in y without an associated sound field. This is seen as follows.
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Consider in the 2-D half space y > 0 the harmonic sound field p(x, y, ω) eiωt satisfying the Helm-

holtz equation

∇2 p + k2 p = 0.

where k = ω/c0. If p, generated by (say) the surface y = 0, is given at y = 0 as the Fourier integral

p(x, 0) = p0(x) =
∫ ∞

−∞
A(α) e−iαx dα,

it is easily verified that the field in y > 0 may be written as

p(x, y) =
∫ ∞

−∞
A(α) e−iαx−iγ y dα (3.51)

with the important square root (with branch cuts along the imaginary axis, and the real interval |α| 6
k; see figure 3.5)

γ (α) =
√

k2 − α2, Im(γ ) 6 0, γ (0) = k. (3.52)
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Figure 3.5 Branch cuts and signs of γ =
√

k2 − α2 in complex α-plane. The definition of γ (α) adopted here is the

branch of the multi-valued complex square root that corresponds to Im(γ ) 6 0 for all α. Im(γ ) = 0 along

the branch cuts. γ (α) ≃ −iα sign(Reα) if |α| ≫ k. The required definition is most efficiently realised by

γ (α) = −i
pv
√
α2 − k2, where pv

√· denotes the principal value (i.e. standard) square root.

The complex square root is here defined such that for any complex α the wave e−iαx−iγ y radiates

or decays in positive y-direction. This is not necessary (we could always invoke the other solution

∼ e+iγ y), but very convenient if complex α’s are essential in the problem.

If we consider solutions of the Fourier-integral type (3.51), the only α’s to be considered are real.

We see that only that part of p0(x) is radiated into y > 0 which corresponds to real positive γ , i.e.
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with |α| < k. The rest decays exponentially with y, and is undetectable for y → ∞. This near field

with |α| > k is essentially of hydrodynamic nature, and becomes just an incompressible flow field for

|α| ≫ k. If this is true for all α, including the largest α−1, which scales on the size of the object, it

is equivalent to the condition of compactness (2.27), and shows that compact sources are acoustically

inefficient.

This distinction between radiating acoustic and non-radiating near field has far reaching implications.

We give some examples.

3.3.2 The Walkman

The low frequencies of a small Walkman headphone are not radiated as sound. We do, however, detect

the pressure when our ear is in the hydrodynamic near field.

3.3.3 Ill-posed inverse problem

Infinitely many boundary conditions are equivalent in the far field. The above boundary condition

p(x, 0) = p0(x) and any other with the same α-spectrum on [−k, k], for example

p(x, 0) = p̃0(x) =
∫ k

−k

A(α) e−iαx dx

produce the same far field. Therefore, the inverse problem of determining p0 from a measured far field

is very difficult (ill-posed). Fine details, with a spatial structure described by |α| > k, are essentially

not radiating. Indeed, waves are in general more scattered by large than by small objects.

3.3.4 Typical plate pitch

If a metal plate is hit by a hammer, bending waves are excited with time- and space-spectra depending

on, say, frequency (ω) and wave number (α) respectively. However, not all frequencies will be radiated

as sound. As seen above, for any α only the frequencies larger than αc0 are radiated. Now, the smallest

α occurring is by and large determined by the size of the plate (if we ignore fluid-plate coupling), say

1/L . Therefore, the smallest frequency that is radiated is given by ωmin = αminc0 = c0/L .

3.3.5 Snell’s law

Also the transmission of sound waves across an interface between two media is most directly described

via this notion of sub- and supersonic wave crests. If a plane wave is incident onto the interface, the

point of reflection in medium 1 generates a disturbance in medium 2 (Fig. 3.6).

With soundspeed c1 in medium 1 and direction4 of incidence (cos ϑ1, sin ϑ1) the disturbance velocity,

measured along the interface, (the phase speed) is c1/ cosϑ1. Depending on ϑ1 and the ratio of sound

speeds c1/c2 this disturbance moves with respect to medium 2 either supersonically, resulting into

transmission of the wave, or subsonically, resulting into so-called total reflection (the transmitted

4Traditionally, the angle used is between the propagation direction and the normal vector of the interface.
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Figure 3.6 Reflection and transmission at a discontinuity.

wave is exponentially small). In case of transmission the phase speeds of the incident and transmitted

wave has to match (the trace-velocity matching principle, [178]).

c1

cosϑ1

= c2

cosϑ2

. (3.53)

This is equivalent to Snell’s law ([52, 178]), from which we can determine the angle θ2 of the trans-

mitted wave with the interface.

For the amplitudes (the reflection and transmission coefficients) we have to do a bit more. See for

example the next problem.

Snellius along an air-bulk interface

If the interface is between air and a dissipative bulk absorber, covered with a top plate, the idea is the

same, but we need a more precise calculation.

Suppose we have in the air y < 0

iωρ− + ρ0∇·v− = 0,

iωρ0v− + ∇ p− = 0,

p− = c2
0ρ−,

(3.54)

while the bulkabsorber in y > 0 is described by the model

iω�ρ+ + ρ0∇·v+ = 0,

(iωρe + σ )v+ + ∇ p+ = 0,

p+ = c2
eρ+.

(3.55)

At the interface y = 0 we have a pressure jump due to the top plate and continuity of mass

p−(x, 0) − p+(x, 0) = − Z

iωρ0

∂

∂y
p−(x, 0),

∂

∂y
p−(x, 0) = ζ

∂

∂y
p+(x, 0), ζ = ρ0

ρe − iσ/ω
.

(3.56)
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Eliminate v to get

∇2 p + k2 p = 0, k = ω

c0

, y < 0

∇2 p + µ2 p = 0, µ = ω

ce

√
�

ζ
, y > 0

(3.57)

Assume incident a plane wave of unit amplitude in y < 0, propagation in (cos φ, sin φ)-direction, and

a reflected wave, together given by

p−(x, y) = e−ikx cosφ−iky sinφ +R e−ikx cosφ+iky sinφ (3.58)

Assume the following transmitted wave in y > 0, which is caused by the incident wave and therefore

has the same x-dependence (the trace-velocity matching principle)

p+(x, y) = f (y) e−ikx cosφ (3.59)

From the equation for p+ it follows that f (y) = T e−iγ y with γ 2 = µ2 − k2 cos2 φ. Since the

transmitted wave is decaying for y → ∞, we choose the branch of the square root with Im(γ ) 6 0.

p+(x, y) = T e−ikx cosφ−iγ y, γ =
√
µ2 − k2 cos2 φ, Im γ 6 0. (3.60)

The direction of the transmitted wave is thus

(k cosφ,Re γ )√
k2 cos2 φ + (Re γ )2

. (3.61)

From the interface conditions we have

(1 + R) e−ikx cosφ −T e−ikx cosφ = (Z/ρ0c0)(1 − R) sinφ e−ikx cosφ

−ik(1 − R) sin φ e−ikx cosφ = −iζγ T e−ikx cosφ

with solution

R =

Z

ρ0c0

+ k

ζγ
− 1

sin φ

Z

ρ0c0

+ k

ζγ
+ 1

sin φ

, T =
2

k

ζγ

Z

ρ0c0

+ k

ζγ
+ 1

sinφ

(3.62)

This solution includes the previous problem of a simple change in sound speed c0.

3.3.6 Silent vorticity

The field of a moving point source may be entirely acoustical, with essentially no other than convec-

tion effects. It is, however, possible, and physically indeed usual, that a fluctuating moving line force

generates a surface or sheet of trailing vorticity. This vorticity is generated in addition of the acoustic

field and is itself also of acoustic order, but, apart from some coupling effects, silent. Typical examples

are (the trailing edge of) a fluctuating wing, a propeller blade, or a flag pole in the wind. The amount

of generated vorticity is not a priori known but depends on details of the vortex shedding process (e.g.

described by the Kutta condition), usually not included in an acoustic model. Indeed, this vorticity
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solution comes into the problem as an eigensolution as soon as continuity of the potential along mean

flow streamlines is released as condition. A potential discontinuity corresponds to a vortex sheet.

Although convected vorticity is silent (it exists without pressure fluctuations) its presence may still

be acoustically important. Near a solid surface (typically the surface from which the vorticity is shed)

the velocity corresponding to the free vorticity cannot exist, as the field has to satisfy the vanishing

normal velocity condition. This induces a fluctuating pressure along the surface which radiates out as

sound, apparently from the surface but of course really the vorticity is the source. Examples are the

whistling sound produced by a thin pipe or wire in the wind (aeolian sound), and the trailing edge

noise – as far as it is due to shed-vorticity – from a blunt-edged airfoil. See for example [192].

We will not consider the generation process here in detail, but only indicate the presence of the ei-

gensolution for a distinct source far upstream.

Consider in a 2D medium a uniform mean flow (U, 0) with velocity perturbations ∇ϕ and pressure

perturbations p small enough for linearization. Bernoulli’s equation and the mass conservation equa-

tion become then

ρ0

∂ϕ

∂t
+ ρ0U

∂ϕ

∂x
+ p = 0, (3.63a)

∂p

∂t
+ U

∂p

∂x
+ ρ0c2

0∇2ϕ = 0, (3.63b)

ϕ → 0 for |y| → ∞. (3.63c)

This may be combined to a wave equation, although the hydrodynamic field is more easily recognized

in the present form5. Possible eigensolutions (solutions without source) for the free field problem (no

solid objects) are given by

p(x, y, t) = 0 (3.64a)

ϕ(x, y, t) = f (x − Ut, y) (3.64b)

∇2 f (x, y) = 0. (3.64c)

for suitable functions f (x, y). A non-trivial solution f decaying both for y → ∞ and y → −∞
is not possible if f is continuous, but if we allow f to be discontinuous along, say, y = 0 (any

surface parallel to the mean flow is possible), of course under the additional conditions at y = 0

of a continuous pressure p and continuous vertical velocity ∂ϕ/∂y, then we may find with Fourier

transformation

ϕ(x, t) =
∫ ∞

−∞
F(α) sign(y) e−α|y|−iα(x−Ut) dα. (3.65)

5 Equations (3.63a,3.63b) may be combined to the convected wave equation

c2
0∇2ϕ − (ϕt t + 2Uϕxt + U2ϕx x ) = 0

which reduces under the Prandtl-Glauert transformation (see 7.42) ϕ(x, y, t) = ψ(X, y, T ) with X = x/β, T = βt +
Mx/c0β, M = U/c0, β = √

(1 − M2) to the ordinary wave equation for ψ , and a pressure given by p = −ρ0(ψT +
UψX )/β. In this way we may obtain from any no-flow solution ψ a solution to the problem with flow. However, care should

be taken.

An integrable singularity in ∇ψ , as would occur at a sharp edge, corresponds without flow to a finite pressure. With flow

it corresponds to a singular pressure (from the ψX -term). If this is physically unacceptable, for example if the edge is a

trailing edge and the sound field induces the shedding of vorticity, a Kutta condition of finite pressure is required and the

solution is to be modified to include the field of the shed vorticity (a discontinuous ϕ).
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This discontinuity relates to a concentrated layer of vorticity (vortex sheet), and is a typical (hydro-

dynamic) phenomenon of acoustics with mean flow. The shedding of vorticity (on the scale of the

linear acoustics) would not occur without mean flow.

For a harmonic force (for example, a Von Kármán vortex street modelled by an undulating vortex

sheet) with frequency ω we have only one wave number α = ω/U in the problem:

ϕ(x, t) = F0 sign(y) exp
(

iωt − i
ω

U
x − ω

U
|y|

)
. (3.66)

This important parameter ω/U is called the “hydrodynamic wave number”. Together with a suitable

length scale L it yields the dimensionless number ωL/U called “Strouhal number”.

It may be noted that this hydrodynamic field has an averaged intensity, directed in x-direction, equal

to (note that p ≡ 0)

〈I ·ex〉 = 1

2
Uρ0

∣∣∣∂ϕ
∂x

∣∣∣
2

= ω2

U 2
|F0|2 e−2 ωU |y| .

The total power output in flow direction is then

∫ ∞

−∞
〈I ·ex〉 dy = ω

U
|F0|2. (3.67)

In the case of an acoustic field (for example the field that triggered the vortices associated to the

hydrodynamic field) the intensity has a non-zero component in y-direction, and in addition to the

purely hydrodynamic power (3.67) some acoustic energy disappears into, or appears from, the vortex

sheet y = 0. See section 9.1.3 and [117, 192, 85, 194, 72].

Exercises

a) Consider the sound produced by thunder, modelled as an infinite line source, fired impulsively. Explain

the typical long decay after the initial crack.

b) Consider in (x, y, z)-space the plane z = 0, covered uniformly with point sources which are all fired

instantaneously at t = τ :

δ(t −τ )δ(x − x0)δ(y − y0)δ(z) (z0 = 0). Calculate the sound field at some distance away from the plane.

c) Consider an infinite equidistant row of harmonically oscillating line sources∑
n δ(x − nd)δ(y) eiωt , placed in the x, z-plane a distance d from each other. Show that constructive

interference in the far field will only occur in directions with an angle θ such that

kd cos θ = 2πm; m = 0, 1, 2, . . .

where k = ω/c0.

d) The same question for a row of alternating line sources.

e) What is the dimension of δ(x) if x denotes a physical coordinate with dimension “length”?

f) Prove the identities (C.36a) and (C.36b).

g) Consider a finite volume V with surface S and outward surface normal n. On V is defined a smooth

vector field v. Prove, by using surface distributions, Gauss’ theorem∫

V
∇·v dx =

∫

S
v ·n dσ.

h) Work out the expression (3.36) for the reflected wave g in the case of formula (3.38) with m = 0.
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i) We define an ideal open end as a position at which p̂ = 0 in a tube. Calculate reflection coefficient R

and impedance Z for such an open end.

j) The same question for an ideal closed end defined by v̂ = 0.

k) Given a uniform duct between x = −∞ and x = 0, with impedance Z0 of the plane x = 0 seen from

the x < 0 side. Calculate Z L , the impedance of the plane x = −L, seen from x < 0.

l) Prove causality of the impedance Z(ω) = R + iωm − i K/ω. Find the inverse Fourier transform of both

Z and Y = 1/Z .

m) Determine the reflection coefficient R of a harmonic plane wave

p(x) = e−ik·x +R e−ik̄·x, v(x) = k
ρ0�

e−ik·x +R
k̄
ρ0�

e−ik̄·x

with k = k(cosϑ, sinϑ), k̄ = k(cosϑ,− sinϑ), k = ‖k‖, c0k = �, � = ω − u0k cosϑ , incident from

y < 0 in a mean flow v0 = (u0, 0) against a wall at y = 0 with impedance Z . What is the impedance

with R = 0?
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4.1 Plane waves

Plane waves are waves in which the acoustic field only depends on the spatial coordinate (say: x) in

the direction of propagation: p(x, t), ρ(x, t), v(x, t), ... . Such waves may emerge, for example, as

approximations for spheric waves at large distance from a point source, or as waves propagating at a

frequency lower than a critical frequency fc called the cut-off frequency in a hard-walled pipe. As we

will see from the discussion in section 6.4 and section 7.2 the cut-off frequency fc is of the order of

c0/2d where d is the pipe width (or diameter). The exact value of fc depends on the shape of the pipe

cross section.

If we can neglect friction, then below the cut-off frequency, the (propagating part of the) acoustic field

in a pipe consists only of plane waves. The condition for the validity of a frictionless approximation

yields a lower bound for the frequency we can consider. At high frequencies, the effect of viscosity is

confined to boundary layers of thickness δA = (2ν/ω)1/2 (where ν = η/ρ is the kinematic viscosity of

the fluid) near the walls. In order to make a plane wave approximation reasonable we should have thin

viscous boundary layers: δA/d ≪ 1. Hence the frequency range in which a plane wave approximation

is valid in a pipe is given by:

2ν

πd2
≪ f <

c0

2d
.

For air ν = 1.5 × 10−5 m2/s while for water a typical value is ν = 10−6 m2/s. Hence we see that

a plane wave approximation will in air be valid over the three decades of the audio range for a pipe

with a diameter d = O(10−2 m). (Check what happens for larger pipes.) This implies that such an

approximation should be interesting when studying pulsations in pipe systems, musical acoustics,

speech production, etc.

We therefore focus our attention in this chapter on the one-dimensional approximation of duct acous-

tics. For simplicity we will also assume that any mean flow u0 = u0(x) is also one dimensional. We

will consider simple models for the boundary conditions. We will assume that the side walls are rigid.

This implies that there is no transmission of sound through these walls. This is a drastic assumption

which excludes any application of our theory to the prediction of environmental noise induced by

pipe flows. In such cases the transmission of the sound from the internal flow to the environment is a

crucial factor. A large amplitude in the pipe may be harmless if the acoustic energy stays inside the

pipe! Extensive treatment of this transmission problem is given by Norton [163] and Reethof [190].

In general the transmission of sound through elastic structures is described in detail by Cremer and

Heckl [36], and Junger and Feit [100]. We further ignore this crucial problem.

In principle the approximation we will use is limited to pipes with uniform cross sections A or, as we

will see in section 8.4, to pipes with slowly varying cross sections (dA/dx ≪
√

A ≪ λ). The most

interesting applications of our approximation will concern sound generated in compact regions as a

result of sudden changes in cross section or localized fluid injection. As we consider low frequencies
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( f < c0/2d) a region with a length of the order of the pipe width d will be by definition compact.

We will treat these regions separately, taking possible three dimensional effects into account. The

(inner-) solution in the compact region is approximated by that of an incompressible flow or a region

of uniform pressure1 .

The boundary conditions for this compact region are related to the plane wave regions by means of

integral conservation laws (Appendix A). In this way we will consider a large variety of phenomena

(temperature discontinuities, jumps in cross sections, multiple junctions, air bubbles, turbulence...).

In the present chapter we will assume an infinitely long or semi-infinite pipe. This is a pipe which

is so long that as a result of friction the waves travelling towards the pipe end do not induce signi-

ficant reflections. This will in fact exclude the accumulation of acoustic energy and phenomena like

resonance. This effect is discussed in the next chapter.

A consequence of this assumption is that the acoustic field will not have a large amplitude and that

we can usually neglect the influence of the acoustic field on a source. The flow is calculated locally

with our previously discussed compact region approximation ignoring any acoustical feedback. This

excludes fascinating effects such as whistling. These effects will be discussed in chapter 5.

If the end of the pipe is part of the problem, we will include this end by a linear boundary condition of

impedance type. The acoustic impedance is a general linear relation in the frequency domain between

velocity and pressure, i.e. a convolution product in the time domain (section 3.2). Since pressure

cannot depend on the future of the velocity (or vice versa) the discussion of such a linear boundary

condition involves the concept of causality (section 3.2).

We will show how the Green’s function formalism can be used to obtain information on aero-

acoustic sound generation by turbulence and to estimate the scattering of sound by a temperature

non-uniformity. These problems will be reconsidered later for free field conditions in chapter 6. It will

then be interesting to see how strong the effect of the confinement is by a comparison of the results

obtained in this chapter and chapter 5 with those obtained in chapter 6.

Convective effects on the wave propagation will be discussed in chapter 9. We restrict ourselves now

to very low mean flow Mach numbers outside the source regions.

4.2 Basic equations and method of characteristics

4.2.1 The wave equation

We consider a one-dimensional flow in a pipe with uniform cross section. If we neglect friction the

conservation laws of mass and momentum are for a one dimensional flow given by:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= ∂(ρβ)

∂t
(4.1a)

ρ
(∂u

∂t
+ u

∂u

∂x

)
+ ∂p

∂x
= fx (4.1b)

where ρβ corresponds to an external mass injection in the flow and fx is an external force per unit

volume.

1For example, the air density fluctuations in an oscillating acoustically compact air bubble in water cannot be neglected,

but we can assume that they are uniform within the bubble.
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We assume now that the field consists of a uniform state (ρ0, p0, u0), plus a perturbation (ρ ′, p′, u′)
small enough to allow linearization:

ρ = ρ0 + ρ,′ (4.2a)

p = p0 + p′, (4.2b)

u = u0 + u′. (4.2c)

∂β/∂t and fx , being the cause of the perturbation, must therefore by definition be small. We substitute

(4.2a–4.2c) in (4.1a) and (4.1b). Neglecting second and higher order terms we obtain the linearized

equations:

∂ρ ′

∂t
+ u0

∂ρ ′

∂x
+ ρ0

∂u′

∂x
= ρ0

∂β

∂t
(4.3a)

ρ0

∂u′

∂t
+ ρ0u0

∂u′

∂x
+ ∂p′

∂x
= fx (4.3b)

We can eliminate ρ ′ by using the constitutive equation:

p′ = c2
0ρ

′ (4.4)

which implies that we assume a homentropic flow.

A one-dimensional wave equation is obtained by subtracting the divergence of the momentum con-

servation law (4.3b) from the convected time derivative (∂t + u0∂x) of mass conservation law (4.3a)

(to eliminate u′):

( ∂
∂t

+ u0

∂

∂x

)2

p′ − c2
0

∂2 p′

∂x2
= c2

0

(
ρ0

∂2β

∂t2
− ∂ fx

∂x

)
. (4.5)

4.2.2 Characteristics

As an alternative we now show the wave equation in characteristic form. This allows a simple geo-

metrical interpretation of the solution of initial condition and boundary condition problems with the

help of a so-called (x, t) diagram. In acoustics this procedure is just equivalent with other procedures.

However, when considering high amplitude wave propagation (non-linear acoustics or gas dynam-

ics) the method of characteristic will still allow an analytical solution to many interesting problems

[234, 113, 171]. Also the characteristics play a crucial rôle in numerical solutions as they determine

optimal discretization schemes, and in particular their conditions of stability.

Using the constitutive equation

∂p

∂t
+ u

∂p

∂x
= c2

(∂ρ
∂t

+ u
∂ρ

∂x

)

we can write the mass conservation law (4.1a) as:

1

ρc

(∂p

∂t
+ u

∂p

∂x

)
+ c

∂u

∂x
= c

ρ

∂(ρβ)

∂t

by addition, respectively subtraction, of the momentum conservation law (4.1b) divided by ρ, we find

the non-linear wave equation in characteristic form:

( ∂
∂t

+ (u ± c)
∂

∂x

)(
u ±

∫
dp

ρc

)
= fx

ρ
± c

ρ

∂(ρβ)

∂t
.
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In the absence of source terms this simply states that along the characteristics c± the Riemann invariant

Ŵ± is conserved:

Ŵ+ = u′ +
∫

dp

ρc
= constant along c+ =

{
(x, t)

∣∣∣ dx

dt
= u + c

}
(4.6a)

Ŵ− = u′ −
∫

dp

ρc
= constant along c− =

{
(x, t)

∣∣∣ dx

dt
= u − c

}
(4.6b)

In the presence of source terms we have:

Ŵ± − Ŵ±
0 =

∫

c±

(
ρ0c2

0

∂β

∂t
± c0 fx

)
dt (4.7)

where the integration is along the respective characteristic. For an ideal gas with constant specific heat

we find by using the fact that the flow is isentropic:

∫
dp

ρc
= 2c

γ − 1
.

In linear approximation in the absence of sources we have

Ŵ± = u′ ± p′

ρ0c0

along the lines defined by c± : dx

dt
= u0 ± c0.

4.2.3 Linear behaviour

In the absence of source terms (the homogeneous problem) we can write the linear perturbation p′ as

the sum of two waves F and G travelling in opposite directions (along the c+ and c− characteristics):

p′ = F (x − (c0 + u0)t)+ G(x + (c0 − u0)t), (4.8a)

u′ = 1

ρ0c0

(
F (x − (c0 + u0)t)− G(x + (c0 − u0)t)

)
. (4.8b)

This solution can be readily verified by substitution into the homogeneous wave equation. The func-

tions F and G are determined by the initial and boundary conditions. As an example we consider two

simple problems for the particular case of a quiescent fluid u0 = 0.

Let us first consider a semi-infinite pipe closed by a rigid piston moving with a velocity u p(t) starting

at t = 0 and x = 0. If u p/c0 ≪ 1 we can use an acoustic approximation to solve the problem. Using

the method of characteristics we first observe in a (x, t) diagram (figure 4.1) that there are two regions

for x > 0:

region I below the line x = c0t

and

region II above the line x = c0t .

Region I is a region in which perturbations induced by the movement of the piston cannot be present.

The characteristic c+
1 : x = c0t corresponds to the path of the first disturbance generated at t = 0

by the starting piston. Hence the fluid in region I is undisturbed and we can write by considering a c−

characteristic (c−
1 ) leaving this region:

p′ − ρ0c0u′ = 0. (4.9)
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x p(te)

te

x p(t)

(x, t)

c−
1

c−
2

c+
1

c+
2

I

II

x✲

t

✻

Figure 4.1 Solution by means of characteristics.

This c−
1 characteristic will meet the piston path x p(t) =

∫ t

0
u pdt ′ where we have:

u′ = u p (4.10a)

because we assume the fluid to stick to the piston (u p ≪ c0). Hence from (4.9) and (4.10a) we have

the pressure at the piston for any time:

p′ = ρ0c0u p. (4.10b)

Now starting from a point x p(t) on the piston, we can draw a c+ characteristic (c+
2 ) along which we

have:

p′ + ρ0c0u′ = (p′ + ρ0c0u′)p = 2ρ0c0u p(te) (4.11)

where te is the retarded or emission time, implicitly given by

te = t − x − x p(te)

c0

. (4.12)

This is the time at which the disturbance travelling along c+
2 and reaching an observer at (x, t) has

been generated by the piston. At any point (x, t) along c+
2 we can find a c−

2 characteristic originating

from the undisturbed region for which (4.9) is valid. Combining (4.9) and (4.11) we see that along c+
2

we have:

u′ = u p(te) (4.13a)

p′ = ρ0c0u p(te). (4.13b)

We could have obtained this solution directly simply by using (4.8a,4.8b), the general solution of the

homogeneous equation. Because the tube is semi-infinite and the piston is the only source of sound,

we have only waves travelling in the positive x direction so that (with u0 = 0):

p′ = F (x − c0t) (4.14a)

u′ = F (x − c0t)/ρ0c0. (4.14b)
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L
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✻
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III

c+
3 c−

3
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1

I

p′ = 0

u′ = 0

L

c+
1

c+
1

II
p′ = p′

0

u′ = u′
0

x ✲

Figure 4.2 (x, t) diagram for the initial value problem.

Using the boundary condition u′ = u p at the piston x = x p we find the retarded (or emission) time

equation (4.12) and so the solution (4.13a,4.13b).

We now consider an initial value problem in a semi-infinite pipe. Suppose that the pipe is closed at

x = 0 by a fixed rigid wall (u′(x = 0) = 0) and that in the region 0 < x < L the fluid is undisturbed

while for x > L there is originally a uniform disturbance (p′
0, u′

0) of the uniform quiescent fluid

state valid for x > 0 (p′
0, u′

0 = 0) (figure 4.2). We can easily delimit the uniform regions I and II in

which the initial state will prevail by drawing the c+
1 and c−

1 characteristics emanating from the point

(x, t) = (L , 0).

The state in region IV at the closed pipe end is the next easiest one to determine. We draw the charac-

teristic c−
2 emanating from region II along which we have:

c−
2 : p′ − ρ0c0u′ = p′

0 − ρ0c0u′
0. (4.15)

At the closed pipe end u′ = 0 so that for t > L/c0:

p′
IV
(x = 0) = p′

0 − ρ0c0u′
0 (4.16)

In region III we obtain the solution by considering the intersection of the waves c+
1 and c−

1 emanating

from regions I and II respectively:

c+
1 : p′ + ρ0c0u′ = 0 (4.17a)

c−
1 : p′ − ρ0c0u′ = p′

0 − ρ0c0u′
0. (4.17b)

Hence:

p′
III

= 1
2
(p′

0 − ρ0c0u′
0) (4.18a)

u′
III

= − 1
2
(p′

0 − ρ0c0u′
0)/ρ0c0. (4.18b)

Finally for any point in the region IV above the line x = c0(t − L/c0) we have:

c+
3 : p′ + ρ0c0u′ = p′

0 − ρ0c0u′
0 (4.19a)

c−
3 : p′ − ρ0c0u′ = p′

0 − ρ0c0u′
0 (4.19b)
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so that we have:

u′
IV

= 0 (4.20a)

p′
IV

= p′
0 − ρ0c0u′

0 (4.20b)

as we already found at the closed pipe end (x = 0). Of course we could have solved this problem

without an (x, t) diagram, but this requires quite an intellectual effort.

From the previous two examples simple rules are obtained to use an (x, t) diagram in combination

with the method of characteristics:

a) Indicate on the x and t axis the initial and boundary conditions.

b) Draw the characteristics delimiting the undisturbed regions in which the initial conditions pre-

vail.

c) Consider reflection of these boundary characteristics at boundary conditions. (Contact surface

delimiting regions of different uniform state p0, ρ0, c0, ... will be discussed in section 4.4.) This

yields a further subdivision of the (x, t) plane in uniform regions.

d) Determine the state at the boundaries at the moment the first message from the initial conditions

arrives.

e) Determine the state in regions where two characteristics of opposite families c+ and c− eman-

ating from regions where the solution is known meet.

While for initial value problems the method of characteristics is most efficient, we will use Fourier

analysis when we consider boundary condition problems. For a steady harmonic perturbation equation

(4.8a,4.8b) becomes:

p′ = p+ eiωt−ikx +p− eiωt+ikx (4.21a)

u′ = 1

ρ0c0

(p+ eiωt−ikx −p− eiωt+ikx). (4.21b)

where p± are amplitudes which are functions of ω, and k is the wave number (k = ω/c0).

4.2.4 Non-linear simple waves and shock waves

A general solution of the non-linear one dimensional homentropic flow equations can only be obtained

by numerical methods. In the particular case of a wave propagating into a uniform region the solution

is considerably simplified by the fact that the characteristics emanating from the uniform region all

carry a uniform message. We will show that as a consequence of this the other characteristics in this

wave are straight lines in the (x, t)-plane. Such a wave is called a simple wave.

Let us for example consider a wave propagating along c+-characteristics which meets c−-waves em-

anating from a uniform region. The message carried by the c−-characteristics is:

Ŵ− = u −
∫

dp

ρc
= Ŵ−

0 for all c−. (4.22)
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If we now consider a c+-characteristic in the simple wave, we have in addition that Ŵ+ is equal to

another constant, specific to that particular c+:

Ŵ+ = u +
∫

dp

ρc
. (4.23)

Addition and subtraction of (4.22) and (4.23) yields, along the c+, the result

u = 1
2
(Ŵ+ + Ŵ−

0 ), (4.24a)∫
dp

ρc
= 1

2
(Ŵ+ − Ŵ−

0 ). (4.24b)

Hence, the velocity u is constant along the c+ considered. As in addition to the thermodynamic quant-

ity
∫
(dp/ρc) also the entropy s is constant along the c+ (because the flow is homentropic), we con-

clude that all thermodynamic variables2 are constant along the c+. In particular the speed of sound

c =
√
(∂p/∂ρ)s is constant along a c+ in the simple wave. Therefore, the slope (u + c) of the c+

characteristic is constant, and the characteristic is a straight line in an (x, t)-diagram.

As an example of an application we consider the simple wave generated for x > 0 by a given boundary

condition p(0, t) at x = 0, assuming a uniform quiescent fluid (u0 = 0) with a speed of sound c = c0

for t < 0. The sound speed c(0, t) at x = 0 is calculated by using the equation of state

p

p0

=
( ρ
ρ0

)γ

which implies

c

c0

=
( p

p0

) γ−1
2γ

.

The message from the c−-characteristics implies

u = 2c0

γ − 1

( c

c0

− 1
)

= 2c0

γ − 1

(( p

p0

) γ−1
2γ − 1

)
.

We can now easily construct the simple wave by drawing at each time t the c+-characteristic eman-

ating from x = 0. We see from these equations that a compression ∂
∂t

p(0, t) > 0 implies an increase

of both c(0, t) and u(0, t), and of course the opposite for a decompression or expansion. As a result,

characteristics at the peak of a compression wave have a higher speed (u + c) than those just in front

of it. This results into a gradual steepening of the compression wave. This non-linear deformation of

the wave will in the end result into a breakdown of the theory because neighbouring c+-characteristics

in a compression intersect for travelling times larger than ts or distances larger than xs given by

ts = −
[(∂(u + c)

∂x

)
t=0

]−1

, (4.25a)

xs = −t2
s

[(∂(u + c)

∂t

)
x=0

]
. (4.25b)

2For a homogeneous fluid the thermodynamic state is fully determined by two thermodynamic variables.
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For weak compressions we find the approximation for an ideal gas with constant γ :

xs ≃ c0ts = 2γ p0c0

γ + 1

[(∂p

∂t

)
x=0

]−1

. (4.26)

For t > ts or x > xs the solution found by integration of the differential equations becomes multiple

valued and loses its physical meaning.

The approximation on which the equations are based will already fail before this occurs because

the wave steepening involves large gradients so that heat conduction and friction cannot be ignored

anymore. This limits the process of wave deformation. For large pressure differences across the wave

the final gradients are so large that the wave thickness is only a few times the molecular mean free path,

so that a continuum theory fails. The wave structure is in the continuum approximation a discontinuity

with jump conditions determined by integral conservation laws. We call this a shock wave. Apart from

discontinuous, the solution is also dissipative, as there is production of entropy in the shock wave.

If the wave is initiated by a harmonic perturbation p′(0, t) = p̂ cos(ωt), the shock formation distance

corresponding to the largest value of ∂
∂t

p′ is given by

xsω

c0

= 2γ p0

(γ + 1) p̂
.
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Figure 4.3 The pressure signal measured at the exit of

the horn for three playing levels: piano (p),

mezzo-forte (mf), and fortissimo (ff).

In a pipe segment, closed on both sides by a rigid wall,

a wave travels easily hundreds of wave lengths before it

is attenuated significantly by friction. Therefore, even

at apparently modest amplitudes of p̂/p0 = O(10−2)

shock waves can appear in a closed tube driven by a

piston at its resonance frequency. Recent papers dis-

cussing such effects are the review of Crighton ([42])

and the work of Ockendon et al. ([166]). When the

pipe segment is open at one end, the wave is inverted

each time it reflects at the open end. The non-linear

wave distortion due to the wave propagation during

half an oscillation period is compensated, at least in

first approximation, in the following half period. Under

such conditions non-linear effects due to flow separa-

tion at the open pipe termination (Disselhorst & Van

Wijngaarden [49]) or even turbulence in the acoustical

boundary layer ([137], [243], [3], [55]) can appear before non-linear wave distortion becomes domin-

ant.

However, when the pipe is driven by a strongly non-harmonic pressure signal p′(0, t), the wave steep-

ening may lead to a shock wave formation before the open end has been reached. This may, for

example, occur in a trombone where the pressure at the exit of the horn shows very sharp peaks, as

shown in figure (4.3). The increase of the wave distortion with the amplitude explains in such a mu-

sical instrument the increase of brightness (the higher harmonics) of the sound with increasing sound

level (Hirschberg [77]). In open-air loudspeaker horns wave propagate in non-linear way. In mufflers

of combustion engines shock waves are also common.
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When the non-linear deformation is small, the generation of the first harmonic p̂1 at 2ω0 by a signal

p̂, originally harmonic with frequency ω0, is given by [178]:

p̂1

p̂
= x

2xs

(4.27)

4.3 Source terms

While fx is a source term in (4.1b) which can be realized by non-uniform gravitational or electro-

magnetic forces, the source term ∂2(ρβ)/∂t2 in (4.1a) does not correspond to the creation of mass

(because we consider non-relativistic conditions). Hence if we introduce a source term ∂2(ρβ)/∂t2

this term will be a representation of a complex process which we include in the 1-D inviscid flow

model as a source term. For example the effect of fluid injection through a porous side wall in the pipe

can be considered by assuming a source term in a uniformly filled pipe with rigid impermeable walls.

In the case of fx we may also find useful to summarize the effect of a complex flow such as the

flow around a ventilation fan by assuming a localized momentum source in a one dimensional model.

This is called an actuator disk model. Of course, this kind of representation of a complex process

by a simple source is only possible if we can find a model to calculate this source. This is only

attractive if a simplified model or an order of magnitude estimate can be used. When the source region

is compact we will be able to find such simple relationships between a simplified local flow model

and the corresponding 1-D sources by applying integral conservation laws over the source region

and neglecting variations in emission time over the source region. The general treatment of the aero-

acoustic sources has already been given in section 2.6. We focus here on some additional features

which we will use in our applications of the theory.

In a compact region of length L and fixed volume V enclosed by a surface S, we will use the conser-

vation laws for mass and momentum in integral form (App. A):

d

dt

∫∫∫

V

ρ dx +
∫∫

S

ρv ·n dσ = 0 (4.28a)

d

dt

∫∫∫

V

ρv dx +
∫∫

S

(P + ρvv)·n dσ =
∫∫∫

V

f dx (4.28b)

where P is the stress tensor (Pi j ).

Within the volume V we describe the flow here in full three dimensional detail, so (4.28a) has no

source term. However, the source term ∂2(ρβ)/∂t2 in the one dimensional representation of the mass

conservation law is supposed to include the effect of the volume integral (d/dt)
∫∫∫

ρ dx. In order

to understand this we compare the actual source region with a 1-dimensional representation of this

source region (figure 4.4). Integration of (4.1a) over the source region yields for a uniform pipe cross

section:
∫ L

0

∂ρ

∂t
dx + (ρu)2 − (ρu)1 =

∫ L

0

∂(ρβ)

∂t
dx . (4.29)

If we assume L to be small compared to the acoustic wave length (compact) and the source term

∂2(ρβ)/∂t2 to be uniform we can write in linearized form :

∂β

∂t
= 1u′δ(x − y) (4.30)
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Figure 4.4 One dimensional representation of source region.

for a small source region around x = y. The value of 1u′ = (u′
2 − u′

1) to be used in (4.30) is found

by application of (4.28a) to the actual situation. If we assume the flow to be uniform at the planes 1

and 2 of cross-section A, where it enters and leaves the volume V , we obtain:

A[(ρu)2 − (ρu)1] = − d

dt

∫∫∫

V

ρ dx + ϕex (4.31)

where ϕex is the externally injected mass flux into V through the side walls. For identical fluids at both

sides and in linearized approximation for a compact source region we have:

Aρ01u′ = − d

dt

∫∫∫

V

ρ ′ dx + ϕex. (4.32)

Since typical wavelengths are much larger than the compact source region, density and pressure gradi-

ents are negligible and we can replace the volume integral by the averaged value. We can write for a

homentropic flow

1u′ = − V

Aρ0c2
0

dp′

dt
+ ϕex

Aρ0

.

In a similar way, if we can neglect the volume contribution (d/dt)
∫∫∫

ρv dx to the integral conserva-

tion law, we obtain in linear approximation (neglecting ρ0u′
2

2 and ρ0u′
1

2):

fx = 1p′δ(x − y). (4.33)

This source term for the 1-dimensional wave equation can be used as a representation of a complex

flow such as that around a ventilation fan.

As an example of a sound source we consider now the effect of the convection of a small fluid particle

with a density ρ and speed of sound c (different from ρ0 and c0) passing through a sudden change in

pipe cross section in which we assume a steady isentropic and subsonic flow u0(x) (figure 4.5). We

will first consider the problem by using the linearized form of the integral conservation laws for small

differences in density and speed of sound ((ρ − ρ0)/ρ0 ≪ 1 and (c − c0)/c0 ≪ 1). A more formal

discussion of this effect is given by Morfey in [144].
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Figure 4.5 Particle convected with the main flow u0(x) through a nozzle.

If the volume Vp of the fluid particle is much smaller than the nozzle volume V and if the properties

of the fluid particle do not differ much from that of the rest of the fluid, we can assume that the particle

is convected with the undisturbed steady flow velocity u0(x). As the particle is small the pressure over

the particle will be uniform and in first approximation equal to the main flow pressure p0(x). p0(x) is

given by Bernoulli’s equation:

p0(x)+ 1
2
ρ0u2

0(x) = constant. (4.34)

The variation in pressure p0(x) will induce a volume variation of the particle, additional to that of the

mean flow, which is related to the variation in the fluid compressibility

K = 1

ρ

(∂ρ
∂p

)
S

= 1

ρc2
(4.35)

by:

A1u′ = −(K − K0)Vp

d

dt
p0(x p(t)) (4.36)

which implies a source term:

∂β

∂t
= −K − K0

A
Vp

d

dt
p0(x p(t))δ(x − y) (4.37)

where:

u p = .
x p= u0(x p). (4.38)

because we assume that the particle is convected with the mean flow velocity u0. Furthermore the

particle will exert an additional force on the fluid due to the density difference (ρ− ρ0) which implies

a force source term:

fx = 1p′δ(x − y) = −ρ − ρ0

A
Vp

Du p

Dt
δ(x − y) = −ρ − ρ0

A
Vpu0

du0

dx
δ(x − y). (4.39)

This force is due to the difference in inertia between the particle and its environment. Note that for an

ideal gas the compressibility K is given by:

K = 1

γ p
. (4.40)

Hence for a small particle in this linear approximation the volume source term (4.37) is due to a

difference in γ . This term vanishes if we consider the convection of a hot gas particle (not chemically
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different from the environment) which we call an entropy spot. In that case sound production will be

due to the difference of inertia between the entropy spot and the surrounding fluid. Howe [81] refers

to this as acoustical “Bremsstrahlung”.

In a similar way we can describe the effect of a slow variation of the tube cross section area A on

sound waves of low frequency (i.e. d
dx

A ≪
√

A ≪ λ). With some care we can derive a suitable one-

dimensional approximation, called Webster’s horn equation, to describe the wave propagation (see

section 8.5). To leading order the momentum conservation law is not affected by the cross section

variation. The mass conservation law, however, becomes:

∂ρ ′

∂t
+ ρ0

A

∂Au′

∂x
= 0 (4.41)

This can be interpreted as the linearized continuity equation (4.3a) with a volume source term

∂β

∂t
= u′

A

∂A

∂x
(4.42)

4.4 Reflection at discontinuities and abrupt changes

The procedure described in the previous section to incorporate sources in a compact region into a one

dimensional model can also be applied to determine jump conditions over rapid changes in a pipe. It

should be noted that a mathematically more sound derivation, allowing also higher order corrections,

is obtained by using the method of Matched Asymptotic Expansions. This will be worked out in more

detail in chapter 8.

4.4.1 Jump in characteristic impedance ρc

x

ρ1c1 ρ2c2

x=y

1 2

Figure 4.6 Jump in acoustic impedance.

We first consider an abrupt change at about x = y in speed of sound c and density ρ between two me-

dia, 1 and 2, in a hard-walled pipe with uniform cross section of size L2 (figure 4.6). If the waves are

exactly plane and the interface is exactly straight, the jump conditions across the interface (continu-

ous velocity and pressure) may follow from continuity of streamlines and normal stress. In general,

however, it is more subtle. As an illustrative example, we will give the derivation here in detail.

Assume that the typical frequencies ω are low such that the Helmholtz numbers ε1 = ωL/c1 and

ε2 = ωL/c2 are small. In that case the acoustic field is 3D only in the immediate neighbourhood of

the jump. At about a diameter L away it is practically plane and only dependent on x (see page 154:

all modes are evanescent except for the plane wave). Define �1 equal to the volume between the (not

necessarily straight and steady) interface S(t) near x = y and the fixed plane x = y− = y − L .

Similarly, we define �2 the volume between S and x = y+ = y + L .



4.4 Reflection at discontinuities and abrupt changes 67

Integrate the mass conservation equations in the form of (1.23) over �1 and �2 to obtain

∫∫∫

�1

[
1

ρ1

dρ1

dt
+ ∇·v1

]
dx +

∫∫∫

�2

[
1

ρ2

dρ2

dt
+ ∇·v2

]
dx = 0

After applying Gauss’ divergence theorem

∫∫∫

�1

1

ρ1

dρ1

dt
dx −

∫∫

x=y−
u1 dA +

∫∫

S

(v1 ·n1) dA

+
∫∫∫

�2

1

ρ2

dρ2

dt
dx +

∫∫

x=y+
u2 dA +

∫∫

S

(v2 ·n2) dA = 0

and using the fact that at interface S the normal velocity components are continuous and so (v1 ·n1) =
−(v2 ·n2), we obtain

∫∫∫

�1

1

ρ1

dρ1

dt
dx − u1(y−)L

2 +
∫∫∫

�2

1

ρ2

dρ2

dt
dx + u2(y+)L

2 = 0

After linearisation and estimating the volume integrals ∼ L3ρt/ρ ∼ L3ωρ ′/ρ0 ∼ L3ωv′/c0 = L2εv′,
we find that

u′
2(y+)− u′

1(y−) = O(ε1v
′
1, ε2v

′
2)

In a similar way we integrate the axial momentum equation

∫∫∫

�1

[
ρ1

du1

dt
+ ∂p1

∂x

]
dx +

∫∫∫

�2

[
ρ2

du2

dt
+ ∂p2

∂x

]
dx = 0.

After integrating to x
∫∫∫

�1

ρ1

du1

dt
dx−

∫∫

x=y−
p1 dA+

∫∫

S

p1 dA+
∫∫∫

�2

ρ2

du2

dt
dx+

∫∫

x=y+
p2 dA−

∫∫

S

p2 dA = 0.

and using the fact that at S the pressure is continuous, we find
∫∫∫

�1

ρ1

du1

dt
dx − p1(y−)L

2 +
∫∫∫

�2

ρ2

du2

dt
dx + p2(y+)L

2 = 0.

Linearisation and estimating the volume integrals ∼ L3ρut ∼ L3ωρ0u′ ∼ L3ωρ0c0u′/c0 ∼ L3ωp′/c0 =
L2εp′ lead to

p′
2(y+)− p′

1(y−) = O(ε1 p′
1, ε2 p′

2)

Altogether we have thus approximately the following jump conditions at x = y

1u′ = u′
2 − u′

1 = 0, (4.43a)

1p′ = p′
2 − p′

1 = 0. (4.43b)

By using the general solution (4.8a,4.8b) of the homogeneous wave equation, we have at x = y for

the jump conditions in the pressure and velocity, respectively:

F1(y − c1t)+ G1(y + c1t) = F2(y − c2t)+ G2(y + c2t), (4.44a)

F1(y − c1t)− G1(y + c1t)

ρ1c1

= F2(y − c2t)− G2(y + c2t)

ρ2c2

. (4.44b)
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If, for example, we have a source at x < y generating an incident wave F1, in a tube of infinite length

so that G2 = 0, we obtain

G1(x + c1t) = RF1

(
2y − (x + c1t)

)
, (4.45a)

F2(x − c2t) = T F1

(
(1 − c1

c2
)y + c1

c2
(x − c2t)

)
, (4.45b)

where R = ρ2c2 − ρ1c1

ρ2c2 + ρ1c1

, T = 2ρ2c2

ρ2c2 + ρ1c1

.

The factor R between G1 and F1 is called the reflection coefficient and the factor T between F2 and F1

the transmission coefficient. We observe that if ρ1c1 = ρ2c2 the acoustic wave is not reflected at the

contact discontinuity. Inspection of (4.44a,4.44b) for ρ1c1 = ρ2c2 also shows that the only solution is

F1 = F2 and G1 = G2. This corresponds to results obtained already in section 3.2 when considering

harmonic waves.

4.4.2 Smooth change in pipe cross section

We now consider a compact transition in pipe cross sectional area from A1 to A2. If the flow is

A1 A2

1
2

L

Figure 4.7 Abrupt cross sectional area change.

homentropic and there is no flow separation (vorticity is zero) the pressure difference 1p′ = p′
2 − p′

1

across the discontinuity can be calculated by using the incompressible unsteady Bernoulli equation

(1.32b):

1p′ = 1
2
ρ0(u

′
1

2 − u′
2

2)− ρ0
∂
∂t
1ϕ, (4.46)

where 1ϕ = ϕ2 − ϕ1 is the potential difference. In linear approximation:

1p′ ≃ −ρ0
∂
∂t
1ϕ. (4.47)

For a compact smooth change in cross section as in figure (4.7) we have continuity of flux A1u′
1 =

A(x)u′(x), while the potential difference can be estimated as1ϕ =
∫ 2

1
u′ dx ≃ u′

1

∫ 2

1
(A1/A(x))dx ∼

u′
1L . The pressure difference1p′ is of the order of ρ0ωu′

1L , which is negligible when Lω/c0 ≪ 1. We

then have a pressure uniform over the entire region. Note that while this is a very crude approximation,

this is a stronger result than just a continuity condition (see section 4.4.4). This condition 1p′ = 0

can be combined with the linearized mass conservation law in the low frequency approximation

ρ0 A1u′
1 = ρ0 A2u′

2 (4.48)

to calculate the reflection at a pipe discontinuity.
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4.4.3 Orifice and high amplitude behaviour

Instead of a smooth variation of the pipe area A we consider an orifice placed in the pipe with an

opening area Ad and a thickness L (figure 4.8). We start with the problem of acoustic wave propagation

through a stagnant fluid (u0 = 0). In principle, if we use the approximations (4.47) and (4.48) and if we
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Figure 4.8 Orifice.

neglect the potential jump 1ϕ, we see that the orifice will be completely “transparent” to the acoustic

waves. However, if Ad ≪ A we find experimentally a significant effect of such an orifice which is

due to the inertia of the air in the opening. Assuming a uniform velocity and an incompressible flow

without friction we have from (4.47):

1p′ ≃ −ρ0

A

Ad

L
∂u′

∂t
. (4.49)

where u′ is the acoustic velocity in the pipe. We could also simply have obtained this result by con-

sidering the pressure difference 1p′ necessary to accelerate the mass of fluid (ρ0 Ad L) in the orifice

and noticing that the particle velocity in the orifice is given by:

u′
d = A

Ad

u′. (4.50)

In practice (4.49) yields a lower bound for the pressure drop across the orifice because we neglected

the inertia of the air in the region outside the orifice. This effect can be taken into account by introdu-

cing an “end correction” δ on both sides:

Leff = L + 2δ (4.51)

where δ appears to be of the order of (Ad/π)
1/2. Typically (8/3π)(Ad/π)

1/2 for a circular orifice and

a larger value for a slit [91]. This explains why a thin orifice (L → 0) also affects the propagation of

acoustic waves in a pipe. For a circular orifice of radius a in a thin plate we have Leff = πa/2 (see

[178]).

If we consider a narrow orifice the local velocity u′
d in the orifice may become quite large. When the

acoustic particle displacement u′
d/ω becomes comparable to the radius of curvature of the edges at the

entrance and the exit of the orifice non-linear effects and friction will result into acoustically induced

vortex shedding [94, 95, 49, 44]. When the fluid particle displacement becomes comparable to the

diameter of the orifice (Ad/π)
1/2u′

d/ω = O(1) the vortex shedding can be described in terms of the

formation of a free jet, by assuming that there is no pressure difference across the boundaries of the

jet. The shear layers enclosing the jet are not capable of sustaining a pressure difference. Furthermore,

if Ad/A ≪ 1 we assume that the kinetic energy in the flow 1
2
ρu′

d
2 is lost upon deceleration of the
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jet by turbulent mixing with the air in the pipe. This implies that in addition to the linear terms in

Bernoulli we should add the non-linear effects:

1p′ = −ρ0

A

Ad

L
∂u′

∂t
− 1

2
ρ
( A

Ad

u′
)2

. (4.52)

A typical feature of this effect is that the pressure 1p′ has now a component 1
2
ρu′

d
2 which is in phase

with the acoustic velocity, and therefore will involve (acoustic) energy losses that were absent in the

situations discussed until now. These losses are due to the fact that the kinetic energy in the jet is

dissipated by turbulence.

The model proposed here appears quite reasonable but in many cases the surface area of the jet is

smaller than Ad which implies additional losses[44]. This effect can be as much as a factor 2. The jet

contraction by a factor 2 corresponds to the so called vena contracta at an unflanged pipe entrance.

For a thin orifice with sharp edges the jet cross section is a factor π
π+2

narrower than the orifice. When

the edges are rounded off the contraction effect disappears rapidly.

It is interesting to consider now how a mean flow affects the acoustic properties of an orifice. We

assume that the mean flow velocity u0 in the pipe is so small compared to the speed of sound c0

that we can neglect all convective effects on the wave propagation (u0/c0 ≪ 1). As the orifice has

a small aperture (Ad/A), the mean flow velocity in the orifice is significant. We assume a stationary

frictionless and incompressible flow. The assumption of a frictionless flow fails, however, to describe

the flow at the exit of the orifice where as a result of friction the flow separates from the wall and a

free jet of surface area Ad is formed.

Assuming further no pressure difference between the jet and its environment we can write for the total

pressure difference 1 p0:

1p0 = − 1
2
ρ
( A

Ad

u0

)2

. (4.53)

For acoustic velocity fluctuations u′ we have, neglecting the higher order terms in u′:

1p′ = −ρ0

A

Ad

L
∂u′

∂t
− ρ0

( A

Ad

)2

u0u′. (4.54)

We see from this equation that even in the linear approximation energy is transferred (ρ0(A/Ad )
2u0u′2)

from the acoustic field to the flow (where it is dissipated by turbulence). This effect is of course a

result of the force ρ0(ω×v) in Howe’s analogy (section 2.6). The vorticity responsible for this is

located in the shear layer that confines the free jet. We will describe the formation of a free jet in

section 5.1. The consequence of this effect is that an orifice placed in a tube with a mean flow is a

very efficient damping mechanism. This device is indeed used downstream of a compressor in order

to avoid the low frequency pulsations that may be induced by the compressor into the pipe system. As

explained by Bechert [10], for any orifice placed at the end of a pipe one can find a Mach number at

which the reflection coefficient for long acoustic waves vanishes. Such an orifice acts thus an anechoic

termination for low frequencies!

A beautiful property of this damping mechanism is that it is not frequency dependent as long as

the frequency is low enough. This is not the case with the effect of friction and heat transfer which

are strongly frequency dependent (equation 3.13), in a way that at low frequencies friction is quite

inefficient.
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Figure 4.9 Vortex shedding at an orifice.

It is interesting, however, to note that under special flow conditions an orifice can produce sound as a

result of vortex shedding. This occurs in particular if the orifice has sharp edges at the entrance where

the vortices are shed [6] (figure 4.9a) or when the edges are rounded at the downstream side [254, 76]

(figure 4.9b).

The frequency of the sound produced by the vortex shedding is such that the period of oscillation

roughly corresponds to the travel time of a vortex through the orifice (a Strouhal number Sr =
f L/(Au0/Ad) = O(1)). When this sound source couples with a resonator (see next chapter) large

amplitudes may be generated. This is an explanation for human whistling [254, 222]. Flow instabil-

ities of this type also occur around pipe arrays such as used in heat exchangers [18]. Whistling cor-

responds to self-sustained flow instabilities. In the case of an externally imposed acoustic wave, the

periodic vortex shedding is a non-linear phenomenon which will generate higher harmonics. Hence,

suppressing low frequency-pulsations (being mechanically dangerous) with an orifice may be paid by

the generation of high frequency noise which is an environmental problem.

A generalization of the procedure which we introduced intuitively for the orifice can be obtained for

an arbitrary compact discontinuity in a pipe system. The acoustical effect of this discontinuity can

be represented in an acoustical model by a pressure discontinuity (1p)source which is calculated by

subtracting from the actual pressure difference 1p the pressure difference (1p)pot, corresponding to

a potential flow with the same velocity boundary conditions:

(1p)source = 1p − (1p)pot.

The actual pressure difference 1p can be measured or calculated as a function of the main flow velo-

city u0 and the acoustical velocity fluctuation u′. The potential flow difference (1p)pot is calculated.
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This procedure is in particular powerful when we can use a quasi-stationary flow model. We then use

the incompressible continuity equation and Bernoulli: Su = constant and p + 1
2
ρ0u2 = constant, to

calculate (1p)pot, while1p is measured in the form 1p = CD
1
2
ρu2 as a function of various paramet-

ers. When convective effects are taken into account in the wave propagation, it appears to be important

to define the aeroacoustic source in terms of a discontinuity (1B)source in the total enthalpy rather than

in the pressure.

4.4.4 Multiple junction

In the previous sections we used the equation of Bernoulli to derive pressure jump conditions for a

discontinuous change in pipe diameter. We could also have obtained a similar expression by consid-

ering the law of energy conservation. The use of Bernoulli is a stronger procedure. To illustrate this

statement we consider the reflection of waves at a multiple junction. As an example consider a T

shaped junction between three pipes of cross-sectional surface A1, A2 and A3, respectively (figure

4.10).

❄

✻
A1 ❄

✻A3

✲✛
A2

1 3

2
✛ x1

✲x3

❄

x2

Figure 4.10 Multiple junction.

We define along each pipe a x-coordinate with a positive direction outwards from the junction. The

conservation of mass for a compact junction yields:

A1u′
1 + A2u′

2 + A3u′
3 = 0 (4.55)

while from the equation of Bernoulli we find:

p′
1 = p′

2 = p′
3 (4.56)

Note that closed side branches are very popular as reflectors to prevent the propagation of compressor

induced pulsations. It is interesting to note that flow may also drastically affect the acoustic properties

of a multiple junction and make the use of this device quite dangerous. In particular if we consider

junctions with closed side branches, the shear layer separating the main flow from the stagnant fluid in

the pipe is unstable. Coupling of this instability with a resonant acoustic field may result into pulsation

levels of the order of p′ ≃ O(ρc0u0) ([25, 108, 257]). Again, the amplitude of these pulsations

depends crucially on the shape of the edges of the junction, in the same way as the shape of the edges

was crucial in the orifice problem. More about this will be explained in the next chapter.

For a T-shaped junction of a main pipe with a closed side branch or a grazing flow along an orifice in

the wall the quasi-steady theory for a main flow u0 indicates that the shear layer can be represented
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by an acoustical pressure discontinuity: (1p)source = −Kρ0u0u′, where K is unity for a uniform main

flow. For an orifice small compared to the boundary layer thickness of the main flow K is of the order

of 0.7 because of the velocity defect in the boundary layer relative to the main flow velocity u0. This

effect is discussed by Ronneberger [211], Tijdeman [236] and Cummings [45].

4.4.5 Reflection at a small air bubble in a pipe

Air bubbles in the water circuit of the central heating of a house are responsible for a very charac-

teristic, high-frequency sound. As a first step to the understanding of this effect we now consider the

reflection of a harmonic wave on a small air bubble of radius a (Volume Vp = (4π/3)a3) placed in

a pipe filled with water at a static pressure p0. If the bubble is small compared to the characteristic

acoustic wave length we can assume that the pressure p′
b in the bubble will be uniform. We neg-

lect surface tension effects and assume that the bubble pressure p′
b is equal to the surrounding water

pressure.

In the low frequency limit, when the inertial forces in the flow around the bubble can be neglected, the

pressure induced by a passing acoustic plane wave in the water around the bubble will be practically

uniform: 1p′ = 0. The bubble will react quasi-statically to the imposed acoustic pressure variation p′.
Since the air-filled bubble is much more compressible than water, the presence of the bubble results

into a volume source term, giving rise to a jump in acoustic velocity across a control volume including

the bubble:

1u′ ≃ − Vp

Aγ p0

dp′

dt
(4.57)

where we neglected the water compressibility compared to the air compressibility (Kair = 1/γ p0)

and we assume an adiabatic compression (taking γ = 1 would imply an isothermal compression as

we expect for very low frequencies). The reflection coefficient for a wave F1 incident to the bubble

can now be calculated from the jump conditions for 1p′ and 1u′. Assuming G2 = 0 we find from the

continuity of pressure:

F1 + G1 − F2 = 0 (4.58)

and from (4.57):

F1 − G1 − F2 = ρwcwVp

Aγ p0

d

dt
(F1 + G1). (4.59)

By subtraction of (4.58) from (4.59) we can eliminate F2 and find:

G1 = −ρwcwVp

2Aγ p0

d

dt
(F1 + G1) (4.60)

The inertia of the water around the bubble will dramatically influence the interaction between the

bubble and acoustic waves at higher frequencies. If we assume that the acoustic wave lengths in both

air and water are very large compared to the bubble radius we still can assume a uniform pressure

in the bubble. This implies also that the bubble will remain spherical. The oscillations of the bubble

radius:

a = a0 + â eiωt (4.61)
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around the equilibrium value a0 will induce a radial flow of the water around the bubble if we assume

that the bubble is small compared to the pipe diameter. In the low frequency approximation considered

here, this flow is incompressible. Hence we have for the radial velocity vr :

vr =
(a

r

)2(∂a

∂t

)
≃ iω

(a0

r

)2

â eiωt (4.62)

where we have assumed â/a0 ≪ 1. The pressure variation in the bubble:

pb = p0 + p̂b eiωt (4.63)

can be related to the incompressible far field (still near the bubble compared to the pipe radius) by

applying the linearized Bernoulli equation:

p + ρw
∂ϕ

∂t
= pb + ρ0

∂ϕb

∂t
. (4.64)

Using (4.62) we can calculate (ϕ − ϕb):

ϕ − ϕb =
∫ ∞

a

vr dr ≃ iωa0â eiωt (4.65)

so that:

p − pb = ρwω
2a0â eiωt . (4.66)

Assuming the air in the bubble to be an ideal gas with pb ∼ ρ
γ

b and neglecting the dissolution of air

in water so that a3ρb = constant, we find:

1

ρb

∂ρb

∂t
= 1

γ pb

∂pb

∂t
= −3

a

∂a

∂t
(4.67)

or in linear approximation:

p̂b

p0

= −3γ
â

a0

. (4.68)

Combining (4.66) with (4.68) and assuming that p = p0 + p̂′ eiωt we have:

p̂′ = ρwa0â(ω2 − ω2
0) (4.69)

where the resonance frequency ω0 (Minnaert frequency) is defined by:

ω2
0 = 3γ p0

a2
0ρw

. (4.70)

The reflection coefficient R = G1/F1 can now be calculated in a similar way as from (4.58) and (4.59)

with the modified source term 1u′ = 4π iωa2
0 â A−1 eiωt . Since 1p′ = 0, we have:

F1 + G1 − F2 = 0 (4.71a)

and

F1 − G1 − F2 = ρwcw
4π iωa0(F1 + G1)

Aρw(ω
2 − ω2

0)
(4.71b)
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or

R = G1

F1

= −
(

1 + A(ω2 − ω2
0)

2π iωcwa0

)−1

. (4.72)

We see that at resonance ω = ω0 the wave is fully reflected by the bubble, and the reflection coefficient

is R = −1. We have of course obtained such a dramatic result because we have neglected all the

dissipation mechanisms which can limit the amplitude of the bubble oscillation. The compressibility

of the water flow around the bubble yields already such a mechanism which limits the amplitude of the

oscillation at the resonance frequency ω0. This is, however, only one of the many amplitude-limiting

mechanisms.

For small bubbles, when the diffusion length for heat transfer into the bubble is comparable to the

bubble radius, heat transfer is a significant energy loss [183]. This occurs for: a = O((Kair/ωρairCP)
1/2).

For larger bubbles heat transfer is negligible. For smaller bubbles the compression occurs isothermally

and one should put γ = 1 in the theory. However, the change of γ from 1.4 to 1 does not introduce

damping. It is only in the intermediate range that the heat flux results in a significant rate of volume

change in phase with the acoustic pressure. (As it is the work W =
∫

p′dV =
∫ T

0
p′(dV/dt)dt

which determines the losses, a volume V proportional to p′ implies for a periodic oscillation W ∼∫ T

0
p′(dp′/dt)dt = 0.)

Another limitation of the amplitude of the oscillation is the highly non-linear behaviour of the pres-

sure for oscillation amplitudes â comparable to a0. If a → 0 the pressure in the bubble increases

dramatically (pb ∼ a−3γ ). Linear theory fails and the bubble may start showing chaotic behaviour

(referred to as acoustical chaos) [115].

As an isolated air bubble already has a strong effect on the acoustics of a water filled tube, a large

amount of bubbles will have a dramatic effect. In section 2.3 we already considered the low frequency

limit for the speed of sound in a bubbly liquid. We have seen that a small volume fraction of bubbles

can considerably reduce the speed of sound. This is due to the large compressibility of the air in the

bubbles. As ω reaches ω0 this effect will become dramatic resulting in a full reflection of the waves

(speed of sound zero) [42, 100]. In the frequency range ω0 < ω < ω0cw/cair no wave propagation is

possible in an ideal bubbly liquid. Above the anti-resonance frequency ω0cw/cair the bubble movement

is in opposition to the applied pressure fluctuations. The radius increases when the pressure increases.

This is just opposite to the low frequency behaviour (figure 4.11). As a result the bubbly mixture will

be stiffer than water, and c > cw! Sound speeds of up to 2500 m/s were indeed observed in bubbly

water with β = 2 × 10−4 !

Another fascinating effect of bubble resonance is its role in the very specific, universal, sound that

rain is known to generate when it hits a water surface [184]. First it should be noted that bubble

oscillation is such an efficient source of sound that any rain impact sound is dominated by it. Now, in

spite of the wide range of velocities and sizes of rain drops that occurs, the universality of the sound

of rain is due to the fact that only bubbles are formed of just one3 particular size. This is a result

of the following coincidence. On the one hand, not any combination of drop size and drop velocity

occurs: rain drops fall at terminal velocity (balance of air drag and drop weight) which is an increasing

function of the droplet radius. On the other hand, not any combination of drop size and drop velocity

generates bubbles upon impact on water. At each drop size there is one drop velocity where bubbles

are formed. This bubble formation velocity is a decreasing function of the droplet radius. Combining

these increasing and decreasing functions, we see that they intersect just at one combination of radius

and velocity, with just one bubble size.

3i.e. a narrow range
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Figure 4.11 Idealized frequency dependence of the speed of sound in a bubbly liquid.

The low-frequency limit clow, slightly lower than cw , is given in equation (2.44) or (2.45).

4.5 Attenuation of an acoustic wave by thermal and viscous dissipation

4.5.1 Reflection of a plane wave at a rigid wall

Consider a pipe −∞ < x 6 0, closed at x = 0 by a rigid wall. Inside the pipe a plane wave

p+(x, t) = F (t − x/c0) travels in positive direction and reflects into a left-running wave p−(x, t).

Without visco-thermal losses, the boundary condition of vanishing velocity becomes

u(0, t) = p+(0, t) − p−(0, t)

ρ0c0

= 0.

This implies a reflected wave p−(x, t) = F (t + x/c0), equal in amplitude and shape to the incident

wave, and therefore a reflection coefficient of unity

R = p−(0, t)

p+(0, t)
= 1.

In reality unsteady heat transfer at the wall will act as a sink of sound, slightly reducing the reflection

coefficient. This heat transfer is a result from the difference between the wall temperature Tw, which

remains practically constant, and the bulk temperature T of the gas, which varies with the adiabatic

pressure fluctuations p′ = p+ + p−. We will limit our analysis to small temperature differences

(T − Tw) and small departures from the quiescent reference state. This allows a linearized theory, so

that we can consider the reflection of a harmonic wave, denoted in complex form as

p(x, t) = p̂(x) e−iωt

with amplitude p̂ outside the neighbourhood of the wall being given by p̂(x) = p̂+ e−ikx + p̂− eikx .

(Likewise, in the following the hatted quantities with “ ˆ ” will denote their corresponding, x-

dependent, complex amplitudes.)
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We define (see also section 8.8) the thermal boundary layer thickness δT as the width of the region

near the wall in which the rate of increase of internal energy is just balancing the net rate of heat

conduction (in this region the wave equation is not valid):

(
ρ0Cp

∂

∂t
T ∼ ωρ0CpT ′

)
≃

(
K0

∂2

∂x2
T ∼ K0

T ′

δ2
T

)
.

Hence, the characteristic length scale for the thermal boundary layer is

δT =
√

2K0

ωρ0Cp

. (4.73)

We will now calculate the temperature profile within the thermal boundary layer. This will allow us to

calculate the deviation ρ̂e = ρ̂ − p̂/c2
0 between the density fluctuations in the boundary layer and the

density fluctuations p̂/c2
0 corresponding to adiabatic compression of an ideal acoustic flow as found

outside the boundary layer. This excess density ρ̂e has to be supplied by a fluid flow towards the

wall at the edge of the boundary layer. This velocity û∞ can be interpreted by an observer, outside

the boundary layer, as due to a displacement d̂T of the rigid wall in a hypothetical fluid without heat

conduction. The work performed by this “virtual” wall displacement on the acoustic field corresponds

to the sound dissipation by the thermal conduction in the boundary layer.

This approximation is based on the key assumption that the acoustic wave length is much larger than

the thickness δT of the thermal boundary layer: ωδT /c0 ≪ 1. In such a case we can assume at the edge

of the boundary layer a uniform adiabatic flow, (dû/dx)∞ = 0, of a uniform fluid ( p̂∞, ρ̂∞). The non-

uniformity associated with the acoustic wave propagation is negligible on the length scale we consider.

The boundary layer flow is described by the one-dimensional conservation laws (1.1,1.2,1.6,1.7) in

linearized form:

iωρ̂ = −ρ0

dû

dx
, (4.74a)

iωρ0û = −d p̂

dx
+ 4

3
η0

d2û

dx2
, (4.74b)

iωCVρ0T̂ = −p0

dû

dx
+ K0

d2T̂

dx2
. (4.74c)

Since in a liquid acoustic wave propagation is isothermal we can limit our analysis to a gas. We assume

an ideal gas with:

p̂

p0

= ρ̂

ρ0

+ T̂

T0

.

The boundary conditions are given by:

T̂ (0) = T̂w, û(0) = 0,
T̂∞
T0

= γ − 1

γ

p̂∞
p0

,

p̂(x) → p̂∞ = p̂+ + p̂− (x/δT → −∞),

where we have introduced, for generality, the fluctuation of the wall temperature T̂w. After the study

of the reflection of a wave at an isothermal wall (T̂w = 0) we can use the same theory to calculate the

sound generated by fluctuations of the wall temperature (T̂w 6= 0).
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After eliminating û from the energy equation by using the mass conservation law, and eliminating ρ̂

by means of an ideal gas law, we obtain

iω
( T̂

T0

− γ − 1

γ

p̂

p0

)
= a0

d2

dx2

( T̂

T0

)

where a0 = K0/ρ0Cp is the heat diffusivity coefficient. In terms of the excess density, with

ρ̂e

ρ0

= 1

ρ0

(
ρ̂ − p̂

c2
0

)
= ρ̂

ρ0

− p̂

γ p0

= γ − 1

γ

p̂

p0

− T̂

T0

,

this equation becomes

iω
ρ̂e

ρ0

= a0

d2

dx2

( ρ̂e

ρ0

)
− a0

γ − 1

γ

d2

dx2

( p̂

p0

)
.

Combining the momentum and mass conservation laws we have

ω2ρ̂ = −d2 p̂

dx2
+ 4

3
η0

d3û

dx3
.

Assuming that viscosity is not dominant – which we can check from the solution to be obtained – we

see that

d2

dx2

( p̂

p0

)
≃ −ω

2ρ̂

p0

= −ω
2γ

c2
0

ρ̂

ρ0

.

The relative pressure variation across the boundary layer (4.73) is of the order of

p̂ − p̂∞
p0

∼ ω2δ2
T

c2
0

( ρ̂
ρ0

)

while ρ̂e/ρ0 is of the same order of magnitude as ρ̂/ρ0, because γ − 1 = O(1). This implies that if

we neglect terms of the order of ω2δ2
T /c

2
0, we have

iω
ρ̂e

ρ0

= a0

d2

dx2

( ρ̂e

ρ0

)
.

This equation has the solution

ρ̂e

ρ0

=
[
ρ̂e

ρ0

]

w

exp
(
(1 + i)x/δT

)
(4.75)

where

[
ρ̂e

ρ0

]

w

= γ − 1

γ

p̂∞
p0

− T̂w

T0

.

Using the equation of mass conservation, the velocity û(−δT ) at the edge of the boundary layer is

given by the integral of the density across the boundary layer as follows. (Note that we have chosen

the positive x-direction towards the wall.)

û(0)− û(−δT ) = −iω

∫ 0

−δT

ρ̂

ρ0

dx .
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The difference between this velocity and the velocity iω(ρ̂∞/ρ0)δT that would occur in the absence

of heat conduction, can be interpreted as a fictitious wall velocity ûT given by

ûT = iωd̂T = iω

∫ 0

−δT

ρ̂ − ρ̂∞
ρ0

dx = iω

∫ 0

−∞

ρ̂e

ρ0

dx,

where d̂T is the fictitious wall displacement amplitude. Substitution of solution (4.75) yields

d̂T = 1
2
(1 − i)δT

[ ρ̂e

ρ0

]
w
, (4.76a)

= 1
2
(1 − i)δT

γ − 1

γ

p̂∞
p0

if Tw = 0 (an isothermal wall). (4.76b)

For an isothermal wall (T̂w = 0) these wall effects, leading to the effective velocity ûT , have the

same effect to the incident acoustic wave as an impedance of the wall. This equivalent impedance

ZT , defined as the ratio of the acoustic pressure fluctuations p̂∞ at the wall and the flow velocity ûT

directed towards the wall (c.f. Eq. 3.14), is then given by

ZT = p̂∞
ûT

= p̂∞

iωd̂T

= ρ0c0

(1 − i)c0

(γ − 1)ωδT

The corresponding time averaged acoustic intensity is found to be

〈IT 〉 = 〈p′u′〉 = 1
2

Re(1/ZT )| p̂∞|2 = 1
4
(γ − 1)

ωδT

ρ0c2
0

| p̂∞|2

which indicates an energy flux from the acoustic field towards the wall and therefore an absorption of

energy.

4.5.2 Viscous laminar boundary layer

The viscous attenuation of a plane acoustic wave propagating along a pipe can often be described

in a similar way as the thermal attenuation by means of a displacement thickness d̂V of the wall. We

consider first the simple case of a laminar boundary layer in the case of wave propagation in a stagnant

and uniform fluid. The wave propagates in the x-direction and induces an acoustic velocity parallel to

the wall which has an amplitude û∞ in the bulk of the flow. The no-slip condition at the wall, ûw = 0,

induces a viscous boundary layer of thickness

δV =
√

2ν0/ω = δT

√
Pr . (4.77)

where Pr = ν0ρ0Cp/K0 is Prandtl’s number. This viscous boundary layer is usually referred to as the

Stokes layer. Neglecting terms of the order of (ωδV/c0)
2 and using Euler’s equation we can write the

x-momentum conservation law in the boundary layer as

iωρ0û = −dp

dx
+ η0

d2û

dy2
= iωρ0û∞ + η0

d2û

dy2
,

where y is the direction normal to and towards the wall (so y ≤ 0). The y-momentum conservation

law reduces to the pressure being uniform across the viscous boundary layer. The boundary conditions

are

û(0) = ûw = 0, û(y) → û∞ if y/δV → −∞.
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The solution is then

û = û∞

[
1 − exp

((1 + i)y

δV

)]
. (4.78)

The displacement thickness dV is defined as the fictitious wall position for which the acoustical mass

flux of a uniform flow with the velocity û∞ is equal to the actual mass flow. This implies:

d̂V = −
∫ 0

−∞

(
1 − û

û∞

)
dy = − 1

2
(1 − i)δV . (4.79)

4.5.3 Damping in ducts with isothermal walls.

In section 4.5.1 we have considered the attenuation of an acoustic wave that reflects normally to a wall.

This attenuation was due to the heat conduction in the thermal boundary layer. In the previous section

4.5.2 we have described the laminar viscous boundary layer associated to a plane wave propagating

along a duct (parallel to the wall). In a gas such a propagation will also induce a thermal boundary

layer, determined by the pressure fluctuations p′
∞ in the bulk of the flow. The expression for the

displacement thickness d̂T derived in section 4.5.1 can be applied.

Using the concept of displacement thickness we will calculate the attenuation of a plane wave travel-

ling in x-direction along a pipe of cross-sectional area A and cross-sectional perimeter L p. We assume

that the boundary layers are thin compared to the pipe diameter.

The bulk of the flow is described by the following plane wave, satisfying Euler’s equation in linear

approximation:

p′
∞ = p̂∞ eiωt−ikx, iωρ0u′

∞ = ikp′
∞,

where k is a complex wave number (the imaginary part will describe the attenuation). Incorporating

the displacement thickness to the mass conservation law integrated over the pipe cross section yields

(Lighthill [123])

∂

∂t

[
ρ∞(A + L pdT )

]
= ∂

∂x

[
ρ∞u∞(A + L pdV )

]

In linear approximation for a harmonic wave this becomes

iω
( p̂∞

c2
0

A + ρ0L pd̂T

)
= ikρ0û∞(A + L pd̂V )

where we made use of the isentropic relationship p̂∞ = c2
0ρ̂∞. After substitution of the expressions

for the displacement thickness d̂T (4.76b) and d̂V (4.79)

d̂T = 1
2
(1 − i)δT

γ − 1

γ

p̂∞
p0

, and d̂V = − 1
2
(1 − i)δV ,

and elimination of û∞ by means of the Euler’s equation, we find a homogeneous linear equation for

p̂∞, which yields the dispersion relation

k2

k2
0

=
A + 1

2
(1 − i)(γ − 1)L pδT

A − 1
2
(1 − i)L pδV

,
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where k0 = ω/c0. Expanding this expression for small δT and δV (using the fact that δV /δT =
√

Pr =
O(1)) and retaining the first order term, we obtain the result of Kirchhoff

k − k0 = 1
4
(1 − i)

L p

A
δV k0

(
1 + (γ − 1)

δT

δV

)
, (4.80)

which corresponds to equation (2.13). More accurate expressions at low frequencies, when the acous-

tical boundary layers are not thin, are discussed by Tijdeman [235] and Kergomard [104]. At high

frequencies the viscosity becomes significant also in the bulk of the flow (Pierce [178]).

At high amplitudes (û∞δV /ν ≥ 400) the acoustical boundary layer becomes turbulent (Merkli [137],

Eckmann [55], Akhavan [3], Verzicco [243]). In such a case the damping becomes essentially non-

linear. Akhavan [3] presents results indicating that a quasi-stationary turbulent flow model provides a

fair first guess of the wall shear stress.

For an isothermal (liquid) flow the quasi-steady approximation yields

k2 − k2
0 = − 1

4
ik0

L p

A
c f û∞

where the friction coefficient c f is defined (and determined) by

c f = − 4A

L p
1
2
ρ0U 2

0

dp0

dx

which relates the mean pressure pressure gradient (dp0/dx) to the stagnation pressure 1
2
ρ0U 2

0 of a

mean flow through the pipe. Note that since (k − k0) depends on the amplitude û∞ of the acoustical

velocity this model implies a non-linear damping. The transition from laminar to turbulent damping

can therefore be a mechanism for saturation of self-sustained oscillations (see chapter 5).

For smooth pipes, Prandtl proposed a correlation formula for c f as a function of the Reynolds num-

ber of the flow. The influence of wall roughness is described in the Moody diagram. Such data are

discussed by Schlichting [220]. In the case of a turbulent gas flow the thermal dissipation is rather

complex. This makes a low frequency limit difficult to establish. In the presence of a mean flow vari-

ous approximations describing the interaction between the acoustic waves and the turbulent main flow

have been discussed by Ronneberger [212] and Peters [176]. The formula of Kirchhoff derived above

appears to be valid at low Mach numbers (U0/c0 ≪ 1) as long as the Stokes viscous boundary layer

thickness δV remains less than the laminar sublayer δL ≃ 15ν/
√
τwρ0 of the turbulent main flow

(where the wall shear stress τw = c f
1
8
ρ0U 2

0 ).

When δL ≪ δV , we can use a quasi-stationary approximation. The transition from the high frequency

limit to the quasi-stationary limit is discussed in detail by Ronneberger [212] and Peters [175].These

references also provide information about the Mach number dependence of the wave number.

4.6 One dimensional Green’s function

4.6.1 Infinite uniform tube

We consider a one dimensional approximation for the propagation of waves in a pipe. This approx-

imation will be valid only if the frequencies generated by the sources of sound in the pipe are lower

than the cut-off frequency. As the acoustic field observed at position x far from a source placed at y is
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induced by a plane wave, the observer position in the cross section of the pipe is indifferent. Apply-

ing the reciprocity principle (section 3.1) we see that in the low frequency approximation the signal

observed at x should also be indifferent for the position of the source in the cross section of the tube

at y. Hence as the source position within a cross section is indifferent we can consider the source to

be smeared out over this cross section resulting in a 1-dimensional source. We therefore look for the

corresponding one-dimensional Green’s function g(x, t|y, τ ) defined by:

∂2g

∂t2
− c2

0

∂2g

∂x2
= δ(t − τ)δ(x − y). (4.81)

Comparison of this wave equation with the wave equation (4.5) in the presence of source term ρ0∂β/∂t

and forces fx :

∂2 p′

∂t2
− c2

0

∂2 p′

∂x2
= c2

0

(
ρ0

∂2β

∂t2
− ∂ fx

∂x

)
(4.5)

indicates that we can assume that (4.81) is a particular case of (4.5) for fx = 0 and:

∂β

∂t
= 1

ρ0 c2
0

H (t − τ)δ(x − y). (4.82)

For an infinitely long tube the solution is:

g(x, t|y, τ ) =





1

2c0

H
(

t − τ + x − y

c0

)
for x < y,

1

2c0

H
(

t − τ − x − y

c0

)
for x > y.

(4.83)

This result is obtained intuitively by using (4.30) which implies that g is the pressure wave generated

by a piston moving with a velocity u′ = (2ρ0c2
0)

−1 H (t − τ) for x = y + ε and a second piston with

a velocity u′ = −(2ρ0c2
0)

−1 H (t − τ) for x = y − ε. Equations (4.83) are then obtained by using the

method of characteristics (section 4.2).

Of course, the above result (4.83) is more efficiently written as:

g(x, t|y, τ ) = 1

2c0

H
(

t − τ − |x − y|
c0

)
. (4.84)

The combination t − |x − y|/c0 is the time at which the signal observed at (x, t) has been emitted by

the source at y. This time is called the retarded or emission time te:

te = t − |x − y|
c0

. (4.85)

4.6.2 Finite uniform tube

We can also fairly easily construct a Green’s function for a semi-infinite pipe (x < L) terminated

at x = L by an ideal open end at which by definition g(L , t|y, τ ) = 0. By constructing the wave

reflecting at this ideal open end with the method of characteristics we find:

g(x, t|y, τ ) = 1

2c0

{
H

(
t − τ + x − y

c0

)
+ H

(
t − τ − x − y

c0

)

−H
(

t − τ + x + y − 2L

c0

)}
(4.86)
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which we can also write for x < L as:

g(x, t|y, τ ) = 1

2c0

{
H

(
t − τ − |x − y|

c0

)
− H

(
t − τ − |x + y − 2L|

c0

)}
. (4.87)

This solution could also have been obtained by assuming the pipe to be part of an infinitely long

pipe, in which at the point x = 2L − y a second point source is placed with opposite sign of and

synchronous with the original point source at x = y. This second source, called image source, is

constructed such that it generates the field due to reflection by the boundary at x = L in the original

problem, and therefore brings into effect the boundary condition at x = L . This method of images can

be generalized to the case of a finite pipe segment (0 < x < L). In such a case we will have to consider

the contribution of an infinite number of images corresponding to the reflections of the original waves

at the boundaries. For example, the field in a finite pipe with hard walled ends is equivalent with the

field in an infinite pipe with equal sources in x = −y, ±2L ± y, ±4L ± y, . . . . This comes down to

a right-hand-side of equation 4.81 of

∞∑

n=−∞
δ(t − τ)

(
δ(x − y − 2nL)+ δ(x + y − 2nL)

)

and a solution

g(x, t|y, τ ) = 1

2c0

∞∑

n=−∞

{
H

(
t − τ − |x − y − 2nL|

c0

)
+ H

(
t − τ − |x + y − 2nL|

c0

)}
.

(4.88)

The Green’s function is clearly more complex now. Furthermore, the addition of mass by the source

in the finite volume results into a (roughly) linear growth of g in t . (Verify this for x = y = 1
2

L and

τ = 0.) This is of particular interest in the time-harmonic case. When the end conditions are such that

multiple reflections are physically relevant they imply that constructive and destructive interferences

will select waves corresponding to standing wave patterns or resonances of the tube. This problem

will be discussed further in the next chapter.

4.7 Aero-acoustical applications

4.7.1 Sound produced by turbulence

We consider a turbulent jet in an infinitely extended pipe (figure 4.12). We suppose that the jet diameter

S

✻

❄

d✻❄

Figure 4.12 Turbulent jet in a pipe.
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d and the jet velocity u0 are such that the characteristic frequency u0/d of the sound produced in the

pipe is low enough to use a one dimensional approximation. We will use the integral formulation

of Lighthill to obtain an order of magnitude estimate for the sound pressure level produced by this

flow, assuming that the mean flow in the pipe is negligible. We also assume that the jet temperature and

density is the same as that of the environment (homogeneous fluid and homentropic flow). If Reynolds

number Re = u0d/ν ≫ 1 and Mach number M = u0/c0 ≪ 1 we can use Lighthill’s analogy in the

form4:

∂2ρ ′

∂t2
− c2

0

∂2ρ ′

∂x2
i

= ∂2(ρ0viv j )

∂xi∂x j

. (4.89)

As we use a tailored Green’s function (we neglect the effect of the flow injection device) the density

ρ ′ can be estimated by:

ρ ′(x, t) =
∫ t

t0

∫∫∫

V

∂2(ρ0viv j )

∂yi∂y j

G(x, t|y, τ ) d ydτ. (4.90)

Using the approximate Green’s function derived in the previous section (Eq. 4.84) we have:

ρ ′(x, t) =
∫ t

t0

∫∫∫

V

∂2(ρ0viv j )

∂yi∂y j

g(x, t|y, τ )S−1d ydτ. (4.91)

After two partial integrations, assuming the source to be limited in space, we obtain:

ρ ′(x, t) =
∫ t

t0

∫∫∫

V

∂2

∂y2
g(x, t|y, τ )S−1ρ0u2 d ydτ. (4.92)

We moved the differentiation from the unknown source term towards the known, and explicitly avail-

able, Green’s function (4.84). We now note that:

∂g

∂y
= − 1

2c2
0

δ
(

t − τ − |x − y|
c0

)∂|x − y|
∂y

, (4.93)

so that from:

∂|x − y|
∂y

= − sign(x − y) = −∂|x − y|
∂x

(4.94)

we have the following important symmetry in the Green’s function of an infinite pipe:

∂g

∂y
= −∂g

∂x
. (4.95)

We substitute this result in (4.92). Since the integration is to the source position g, we can now remove

one of the differentiations to x from the integral, resulting in the expression:

ρ ′(x, t) = ∂

∂x

∫ t

t0

∫∫∫

V

ρ0u2

2Sc2
0

δ(te − τ) sign(x − y) d ydτ. (4.96)

4While the assumption that friction is a negligible source of sound was already formulated by Lighthill, a reasonable

confirmation of its validity was only provided thirty years later by the work of Morfey [145] and Obermeier [165]. The exact

range of validity is still subject of research.
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with te = t − |x − y|/c0. The time integration can now be carried out:

ρ ′(x, t) = ∂

∂x

∫∫∫

V

1

2Sc2
0

[ρ0u2]τ=te sign(x − y) d y (4.97)

where we used the property (C.26) of the δ-function. At sufficiently large distances the only length

scale in the solution is the characteristic wave length c0d/u0 corresponding to the characteristic fre-

quency5 u0/d of the turbulence in the jet. Hence we can estimate:

∂

∂x
≃ 1

c0

∂

∂t
∼ u0

c0d
= M0

d
. (4.98)

Because the sound production by turbulence decreases very fast with decreasing mean flow velocity,

the volume of the free jet contributing to the sound production is limited to a region of the order of

d3. In this region the turbulent velocity fluctuations are of the order of u0. Hence we find at large

distances:

ρ ′ ∼ M0

d

ρ0u2
0

2Sc2
0

d3 (4.99)

implying:

ρ ′2 ∼
(1

2
ρ0M3

0 d2/S
)2

. (4.100)

This is the result obtained by Ffowcs Williams [63]. This Mach number dependence has indeed been

observed in a pipe downstream of an orifice for sufficiently high Mach numbers. At low Mach numbers

the sound production is dominated by the dipole contribution of O(M4) due to the interaction of the

flow with the orifice [138].

A discussion of the sound production by confined circular jets is provided by Reethof [190] for ar-

bitrary jet Mach numbers. Reethof finds for subsonic jets (M0 < 1) a ratio of the radiated power

to the flow power ηac = 3 × 10−4 M3
0 . For supersonic jets (M0 > 1) typical values are ηac =

1.6 × 10−3(M2
0 − 1)1/2. In that case the Mach number is taken from M2

0 = 2
γ−1

[(p1/p2)
(γ−1)/γ − 1],

where p1/p2 is the ratio of the pressure across the orifice.

The dependence of the sound production on the jet geometry is discussed by Verge [242] and

Hirschberg [78]. For planar jets issued from a slit of height h the typical frequencies are of the

order of 0.03u0/h (Bjørnø [15], Sato [219]). This implies that correlations developed for subsonic

circular jets are useless for planar jets.

4.7.2 An isolated bubble in a turbulent pipe flow

Consider an isolated bubble of radius a0 small compared to the pipe diameter D. Assume a turbulent

pipe flow. The sound produced by the turbulence will, locally, be enhanced by the presence of the

bubble. If we assume that the frequencies in the turbulence, typically O(u0/D), are much smaller

than the bubble resonance frequency ω0, we can calculate the sound produced by the interaction of

the bubble with the turbulence.

5We assume a jet with circular cross section.
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The Green’s function is calculated by using the reciprocity principle. We consider the acoustic re-

sponse of the bubble for a plane wave emitted from the observer position x towards the bubble. For

the sake of simplicity we consider this incident wave to be harmonic pin = p̂in eiωt−ikx . The bubble

pressure response p̂b is, as is shown in 5.4.5 (use (4.72) with p̂in = F1 and p̂′ = F2), given by:

p̂b = −

(ω0

ω

)2

1 −
(ω0

ω

)2

− 2π ia0cw

Sω

p̂in. (4.101)

Using Bernoulli and the continuity equation we can calculate the pressure distribution around the

bubble:

p̂ − p̂b = −ρwiω(ϕ − ϕb) (4.102)

where:

ϕ − ϕb =
∫ r

a0

iωâa2
0

r2
dr = iωâa0

(
1 − a0

r

)
. (4.103)

Furthermore, we have:

â

a0

= − p̂b

3γ p0

, (4.104)

so that p̂(r) is given by:

p̂ = p̂b

(
1 −

( ω
ω0

)2(
1 − a0

r

))
=

1 −
(ω0

ω

)2

− a0

r

1 −
(ω0

ω

)2

− 2π ia0cw

Sω

p̂in. (4.105)

Taking for p̂in the Fourier transform of (2c0S)−1 H (t − τ − |x − y|/c0) we obtain as p̂ the Fourier

transform Ĝ(x|y) of the Green’s function G(x, t|y, τ ):

Ĝ(x|y) = e−iωτ−ik|x−y|

2iωcwS
·

1 −
(ω0

ω

)2

− a0

r

1 −
(ω0

ω

)2

− 2π ia0cw

Sω

. (4.106)

Using Lighthill’s analogy we now can compare the response of the pipe to turbulence, with and

without bubble. We obtain by partial integration:

ρ ′ =
∫ t

t0

∫∫∫

V

ρ0viv j

∂2G

∂yi∂y j

d ydτ. (4.107)

If we consider a small turbulent spot in the direct neighbourhood of the bubble the ratio of the re-

sponses is given by:

∂2Gb

∂r2

∂2G0

∂y2

=

∂2Gb

∂r2

∂2G0

∂x2

=

c2
wa0

ω2r3

1 −
(ω0

ω

)2

− 2π ia0cw

Sω

. (4.108)
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At the resonance frequency ω0 this yields a factor (a0 S/4πr3)(ρwc2
w/3γ p0)

1
2 while for low fre-

quencies we find (a0/r)3(ρwc2
w/3γ p0). If r = O(a0) we see that the sound produced by turbulence in

the neighbourhood of the bubble will be dramatically enhanced.

The major contribution of the bubble turbulence interaction will be at low frequencies. An important

reason for this is that for typical conditions in water flow, the length scale of vortices corresponding

to pressure fluctuations at the bubble resonance frequency ω0/2π is much smaller than the bubble

radius [43]. In such a case these pressure fluctuations are averaged out at the bubble surface and do

not have any significant contribution to the spherical oscillations of the bubble. An example of sound

production by bubbles in a pipe flow is the typical sound of a central heating system when air is

present in the pipes. Also the romantic sound of water streams and fountains is dominated by bubbles.

In those cases, however, we have a three-dimensional environment.

4.7.3 Reflection of a wave at a temperature inhomogeneity

As a last example of the use of the integral equation based on the Green’s function formalism we

consider the interaction of a wave with a limited region in which the gas temperature T (x) is non-

uniform (0 < x < L). We assume the pipe to be horizontal and that gravity is negligible. Hence, at

rest the pressure is uniform. The gas density is given by:

ρ/ρ0 = T/T0 (4.109)

and the speed of sound c is given by:

c/c0 = (T/T0)
1
2 (4.110)

where ρ0, T0 and c0 are the properties of the uniform region. We now further assume that |T −
T0|/T0 ≪ 1 so that we can use a linear approximation in which we assume that the scattered sound

wave p′′ is weak compared to the amplitude p′
i of the incident wave. In such a case we can write

p′ = p′
in + p′′, so that the linearized 1-D wave equation (2.50):

∂2 p′

∂t2
− ∂

∂x

(
c2 ∂p′

∂x

)
= 0

can be approximated by:

∂2 p′′

∂t2
− c2

0

∂2 p′′

∂x2
= ∂

∂x

(
(c2 − c2

0)
∂p′

in

∂x

)
. (4.111)

The source term has been linearized by assuming that the pressure fluctuations are equal to the (undis-

turbed) incident wave amplitude. It is the source term considered by Powell [181] for the description

of sound scattering at entropy spots.

Using the integral formulation (3.13) and the one dimensional Green’s function g we find:

p′′ =
∫ ∞

−∞

∫ L

0

∂

∂y
(c2 − c2

0)
∂p′

in

∂y
g dydτ. (4.112)

Partial integration yields

p′′ = −
∫ ∞

−∞

∫ L

0

(c2 − c2
0)
∂p′

in

∂y

∂g

∂y
dydτ. (4.113)
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From equation (4.84) we have

∂g

∂y
= 1

2c2
0

sign(x − y)δ(te − τ) (4.114)

(with te = t − |x − y|/c0) and hence

p′′ = − 1

2c2
0

∫ L

0

sign(x − y)(c2 − c2
0)

∫ ∞

−∞
δ(te − τ)

∂p′
in

∂y
dτdy

= − 1

2c2
0

∫ L

0

sign(x − y)(c2 − c2
0)
∂

∂y
p′

in(y, te) dy. (4.115)

If we take for example

p′
in = p̂in H (x − c0t) (4.116)

and use the relation c2/c2
0 = T/T0, then we have for (say) x < 0

p′′ = 1
4

p̂in

∫ L

0

T − T0

T0

δ
(

y − x + c0t

2

)
dy (4.117)

=





1
4

p̂in

T ( 1
2
(x + c0t))− 1

T0

if 0 < x + c0t < 2L

0 otherwise.

Exercises

a) Show that for an acoustic wave travelling in the negative x direction we have:

u′ = −p′/ρ0c0.

b) Consider a rigid piston at (x = 0) separating the fluid I for x < 0 from the fluid II at x > 0 in an

infinitely long pipe of 10−2 m2 cross section. Assume that the piston oscillates with a frequency ω and

an amplitude a. Calculate the force necessary to move the piston as a function of time (ρ0,I = 1.2 kg/m3,

c0,I = 344 m/s, ρ0,II = 1.8 kg/m3 and c0,II = 279 m/s, ω = 103 rad/s, a = 10−3 m). Use linear theory

and verify if it is indeed valid.

c) Water hammer effect:

Consider a steady flow of water in a rigid horizontal pipe which we stop suddenly by closing a valve.

Calculate the pressure on both sides of the valve for flow velocities of 0.01 m/s and 1 m/s. What is the

force on the valve for a pipe cross section surface of 10−2 m2.

1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901

123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901
123456789012345678901

S u0 + u′

v j A

1 2

Figure 4.13 Exercise d)
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d) The same problem as c) but with a slowly closing valve in an infinitely long pipe (figure 4.13). Assume

the area of the valve opening to be a given function of time:

A = A(t).

Suppose further that the flow separates at the exit of the valve forming a free jet into the pipe downstream

of the valve. If A ≪ S we can neglect the recovery of dynamic pressure ( 1
2
ρv2

j ) upon declaration of the

fluid by turbulent mixing of the jet with the fluid in the pipe. Hence the pressure drop 1p across the

valve is 1p = 1
2
ρv2

j if we neglect inertial effects in the valve (we assume
√

A(∂v j/∂ t) ≪ v2
j ).

e) Sow that, in the absence of aero-acoustic sources, the conservation of acoustic energy implies a continuity

of pressure (1p′ = 0) across a compact discontinuity in a pipe, like a sudden change in diameter.

f) Calculate the reflection coefficient R and the transmission coefficient T for a contact surface between

water and air. Consider both the cases of a wave incident from the air and water sides in the direction

normal to the surface.

g) Same question as f) for a discontinuity in temperature of 30 K in air at atmospheric pressure (corres-

ponding to the temperature difference from inside our mouth to outside in the winter).

h) Calculate the reflected and transmitted acoustic intensities I for questions f) and g).

i) Consider a semi-infinite tube closed at x = 0 by a harmonically moving piston (u p = û p eiωt ). The

tube is filled with air. At a distance L from the piston there is a temperature jump of 30 K . Calculate the

amplitude of the waves in steady state conditions.

j) Calculate the reflection coefficient R and the transmission coefficient T for a low frequency wave F1

incident from the left to a stepwise area change from A1 to A2 in an infinitely long pipe. Assume linear

behaviour and no mean flow.

k) Same exercise as j) for a combined stepwise change in cross section and specific acoustic impedance

jump 1ρc of the fluid.

l) A closed pipe end can be considered as a change of area such, that A2/A1 → 0, while an open end can

be approximated by a change with A2/A1 → ∞. Calculate in both cases the reflection coefficient R,

using the result of exercise j).

m) Calculate the reflection coefficient for a harmonic wave at an orifice, assuming linear behaviour and no

mean flow.

n) What are the conditions for which we can neglect friction in the orifice?

o) Consider an orifice of d = 1 mm diameter, without sharp edges, in a pipe, of diameter D = 1 cm, filled

with air at room conditions. At which amplitude (in dB) one would expect non-linear losses due to

acoustical flow separation for a harmonic wave (with a frequency of 10 Hz, 100 Hz and 1000 Hz) if there

is no mean flow. Such orifices are used in hearing-aid devices for protection.

p) When flow separation occurs as a result of mean flow, the end correction δ is affected. At low frequencies

by about a factor 3 compared to high frequencies or the linear behaviour without flow separation. Explain

qualitatively this effect. (Why can we expect a decrease of δ?)

q) Consider a wave G1(t + x1/c0) incident on a junction of three semi-infinite tubes (with cross sections

A1,A2, and A3). Assuming no other incident wave (G2 = G3 = 0) calculate the reflection and transmis-

sion coefficients.

r) Consider a pipe of cross sectional area A1 (A1 = A3) with a closed side branch of section A2 and of

length L (figure 4.14). Calculate the reflection and transmission coefficients R = F1/G1 and T = F3/G1

for an incident harmonic wave

G1 = eiωt+ikx1

if we assume that G3 = 0. The wave number k is defined as k = ω/c0. What are the conditions for which

R = 0 ? What are the conditions for which R = 1 ? What are the conditions for which R = −1?
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Figure 4.14 Tube with closed side branch.

s) Calculate the low frequency limit of the reflection coefficient R = F1/G1 for an air bubble of 1 mm in a

pipe of 1 cm diameter for a harmonic wave of frequency ω. Assume p0 = 1 bar.

t) Calculate the pressure pb in an air bubble of mean radius a0 in water for an incident wave pin =
p̂in eiωt−ikx in a pipe of cross section A p ≫ a2

0 .

u) In the model described above (section 4.4.5) the pressure in the bubble is assumed to be uniform. Is this

a reasonable approximation for an air bubble of 1 mm radius in water up to the resonance frequency ω0

for p0 = 1 bar?

v) In the above model the acoustic pressure imposed on the bubble by the incident acoustic field is assumed

to be uniform across the pipe diameter. Is this a reasonable approximation for a bubble with a radius a0 =

1 mm placed in a pipe of diameter D= 1 cm filled with water at ambient pressure? Assume a frequency

ω = ω0.

w) In the above model we assumed the bubble to be small compared to the pipe diameter, and far from the

walls. Estimate ω0 for a bubble placed at the wall.

x) Is the model valid for a bubble which is large compared to the pipe diameter? Why?

y) Determine the physical dimensions of the Green’s function by substitution in the wave equation (4.81).

z) Verify (4.84) by Fourier transformation of (4.81) and then using section C.1.

A) Construct the Fourier transformed Green’s function for a semi-infinite (x < L) tube terminated at x = L

by an impedance Z L .

B) Construct the Fourier transformed Green’s function for a source placed left from a small bubble placed

in an infinite tube.

C) Show that for low frequencies G(x, t| y, τ ) = g(x, t|y, τ )/S for |x − y| ≫
√

S in a tube of uniform

cross section S.

D) Explain (4.95) in terms of the effect of displacement of the source or observer on the Green’s function

for an infinite tube.

E) Calculate using (4.99) the sound pressure level in a tube of 10 cm diameter due to the inflow of a air jet

of 1 cm diameter with a velocity of 10 m/s. Assume atmospheric conditions and room temperature. Are

the assumptions valid in this case? Are the assumptions valid if u0 = 102 m/s ?

F) Same question as E) for a jet placed at the end of a semi-infinite pipe closed by a rigid wall, as indicated

in figure 4.15.

G) Calculate the amplification factor for turbulence noise at resonance (S/a2
0)(ρwc2

w/3γ p0)
1
2 , and at low

frequencies ρwc2
w/3γ p0 for an air bubble of diameter 2a0 = 1 mm in a pipe of D = 1 cm diameter filled

with water at atmospheric pressure.
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Figure 4.15 Exercise F)

H) In principle the turbulent pressure fluctuations in a pipe have a broad spectrum with a maximum around

a characteristic frequency u0/D. Consider a flow velocity of 1 m/s. Do you expect the characteristic

frequency of turbulence to be large or small compared to the resonance frequency ω0/2π of an air

bubble with 2a0 = 1 mm as in question G)?

I) For a small bubble the surface tension σ contributes significantly to the internal pressure pb of the bubble.

For a spherical bubble we have:

pb = pwater(a)+
2σ

a
.

In equilibrium pwater(a) = p0. If we consider the oscillation of such a bubble we find a resonance

frequency:

ω0 =
(3γ p0

ρwa2
0

+ 4σ

ρwa3
0

) 1
2
.

Derive this formula. Given the surface tension σ of water is 7 × 10−2 N/m, calculate the bubble radius

for which the surface tension becomes important.

J) The sound in bubbly liquid is often due to the oscillations of bubbles caused by a rapid local acceleration

or to oscillations induced by the coalescence or collapse of bubbles. This yields the typical “bubbling”

noise of a fountain or brook. As an example consider the difference in volume 1V between the sum of

the volumes of two bubbles of equal radii a0 = 10−4 m and a single bubble containing the same gas (after

coalescence). This difference in volume is due to surface tension effects (see previous question). Assume

that the new bubble is released with a radius a corresponding to the original volume of the two smaller

bubbles. The bubble will oscillate around its new equilibrium radius. The movement will be damped out

by radiation. Calculate the amplitude of the acoustic pressure waves generated in a pipe of 1 cm diameter

filled with water as a function of time.



5 Resonators and self-sustained oscillations

5.1 Self-sustained oscillations, shear layers and jets

When using Lighthill’s analogy to estimate the intensity of the sound produced by a turbulent flow

in section 4.7.1 we have assumed that the sound source is independent of the acoustic field. This

assumption was not justified but it seems reasonable if the acoustic velocities in the flow are “small

enough”. In fact this hypothesis breaks down in a large number of very interesting cases. In many

of these cases the acoustic feedback (influence of the sound field on the sound source) results in the

occurrence of a sharply defined harmonic oscillation, due to the instability of the flow. Whistling,

jet-screech and reheat-buzz are examples of such oscillations. In general the maintenance of such

oscillations implies the existence of a feedback loop as shown in figure 5.1.

edge hydrodynamic

instability

acoustic

resonator

hydrodynamic feedback

acoustic feedback

Figure 5.1 Flow-acoustic oscillator.

In most cases the acoustic field interacts with an intrinsically unstable hydrodynamic flow (jet, shear

layer) at a sharp edge where the flow separates from the wall. This separation point appears to be a

localized region where the acoustic flow and the hydrodynamic flow are strongly coupled. We will

now consider this interaction in some detail.
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1234567
1234567
1234567
1234567
1234567
1234567

−∂p

∂r

ρv2

r

v

Figure 5.2 Flow in a bend.

In principle, if the flow were frictionless and is described accurately

by a potential flow, the velocity at an edge would be infinitely large.

This can be understood by considering the flow in a pipe at a bend

(figure 5.2).

The fluid particles passing the bend feel a centrifugal force ρu2
ϑ/r per

unit volume. If the flow is stationary it is obvious that there should be

a centripetal force compensating the centrifugal force. In a frictionless

flow the only force available is the pressure gradient −∂p/∂r . Hence,

we see that the pressure at the outer wall in the bend should be larger

than at the inner wall. Using the equation of Bernoulli for a stationary

incompressible flow (p + 1
2
ρv2 = constant) we conclude that the

velocity is larger at the inner wall than at the outer wall! (See figure 5.3.)
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r
v

Figure 5.3 Frictionless flow

in a bend.

We could also have found this result kinematically by noticing that if

a particle in an irrotational flow follows a curved path there should be

a gradient ∂v/∂r which “compensates” the rotation which the particle

undergoes by following a curved path.

The fact that the pressure is larger at the outer wall can also be understood

as a consequence of the inertia of the flow which is trying to follow a

straight path and “hits” the wall. The pressure built up at the wall yields

the force necessary to bend the streamlines.

A particle in the flow close to the inner wall is just like a ball rolling into a

well (figure 5.4). The Bernoulli equation, which represents in this case the

law of conservation of mechanical energy, tells that the pressure decrease

implies a decrease of potential energy p which is compensated by an increase of kinetic energy 1
2
ρv2.

When leaving the well (bend) the kinetic energy is again converted into pressure as the particle climbs

again (the adverse pressure gradient).

v v

v

Figure 5.4 Ball passing along a well.

A frictionless flow is only possible far from the wall.

Even at high Reynolds numbers there is always a thin

region at the wall where friction forces are of the same

order of magnitude as the inertial forces. We call this

thin region of thickness δ a viscous boundary layer.

It can be shown that because the flow is quasi-parallel

the pressure in the boundary layer is uniform and equal

to the local pressure of the frictionless flow just outside

the boundary layer. More accurately: this implies that the normal pressure gradient n·∇ p at the wall

is negligible in the boundary layer. In the boundary layer the friction decelerates the flow to satisfy the

“no-slip boundary condition” at the wall: v = 0 (for a fixed wall; figure 5.5). As is clear from figure

5.5 the flow in the boundary layer is not irrotational. The boundary layer is a region of concentrated

vorticity.
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Figure 5.5 Boundary layer

velocity profile.

If we consider now a sharp bend the velocities following poten-

tial flow theory should now become infinitely large at the inner

edge (figure 5.6). (This can be verified by integration of the radial

momentum conservation law.) The assumptions used to derive the

flow pattern break down: the viscous term η∇2v which we have

neglected in the equation of motion becomes dominant near the

edge. This results into a flow separation. The flow separation can

be understood qualitatively when we think of the ball in figure 5.4

in the case of a very deep well and in presence of friction. In such

a case the ball never succeeds in climbing up the strong pressure

gradient just behind the edge.

The separation of the boundary layer at the edge implies an injection of vorticity in the main stream.

This vorticity is concentrated in the shear layer separating the mean flow from a dead water region

(figure 5.6) just behind the bend. Taking the circulation along a path enclosing part of such a shear

layer clearly shows that the circulation per unit length (dŴ/dℓ) in the shear layer is just equal to the

velocity jump across the layer: dŴ/dℓ = 1v (figure 5.7).

This complex process of separation can be described within the frame of a frictionless theory by

stating that the velocity at a sharp edge should remain finite. This so-called “Kutta condition” implies
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Figure 5.6 Sharp bend. a) potential flow; b) actual flow.
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Figure 5.7 Circulation in the shear layer

that a thin shear layer should be shed at the edge. The shear layer contains a distribution of vorticity

such that the velocity induced at the edge by the vorticity just compensates the singularity of the

potential flow (which would exist in absence of shear layer).

It can be shown that this condition also implies that the shear layer is shed tangentially to the wall

at the side of the edge where the flow velocity is the largest. The validity of a Kutta condition for

an unsteady flow has been the subject of quite a long controversy. At this moment for a sharp edge

this is an accepted principle. Hence if next to a stationary flow we impose an unsteady potential flow

(acoustic perturbation) the amount of vorticity shed at the edge will be modulated because we modify

the singular potential flow at the edge.

We see therefore that within a potential flow theory the sharp edges play a crucial rôle because they

are locations at which a potential flow can generate vorticity.1 It is not surprising therefore that in

nature the feedback from the acoustic field on a flow will often be concentrated at an edge.

Self-sustained oscillations imply an amplification of the acoustic perturbations of the main flow by

flow instability (this is the energy supply in the feedback loop). The instability of a thin shear layer

can be understood by considering as a model an infinitely long row of line vortices in a 2-D flow

(figure 5.8).

The velocity induced by a line vortex of strength Ŵ is calculated using Biot-Savart’s law:

uϑ = Ŵ

2πr
, (5.1)

where r is the distance between the point at which we consider the velocity and the vortex. As we see

in figure 5.8a a row of vortices is (meta)stable because the velocity induced on a given vortex by the

1In a two dimensional frictionless incompressible flow Dω/Dt = 0 so that there is no interaction between the vortical

and potential flow which can change ω within the flow.
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Figure 5.8 Instability of a vortex row induced by a non-uniformity of dŴ/dℓ.

vortices left of the point are just compensated by the velocities induced by the vortices at the right (by

symmetry). This is, however, a metastable situation as any perturbation will induce a growing flow

instability. For example a lateral displacement of one of the vortices out of the row is sufficient. Hence

we understand (figure 5.8b) that a modulation of the vorticity by acoustic perturbations can induce a

roll up of the shear layer into a vortex structure as shown in figure 5.9.

Figure 5.9 Shear layer instability.

The most unstable type of flows is the flow between two shear layers of opposite vorticity: jets and

wakes (figure 5.10). A wake appears to be so unstable that when friction forces are sufficiently small

(above a certain Reynolds number) it is absolutely unstable [88]. Hence, any perturbation will result

in a break up of the wake structure shown in figure 5.10. A typical result of this is the occurrence of

vortices, periodically shed from a cylinder for Re > 50, which is known as the Von Kármán vortex

street [18]. This periodic vortex shedding is responsible for the typical whistle of an empty luggage

grid on a car. A jet left alone (free jet) will also exhibit some specific oscillations at moderate Reynolds

numbers (Re = O(103)) [16]. Turbulence will, however, kill any clear structure at higher Reynolds

numbers. A jet needs a little help to start whistling. However, there are many ways to persuade him to

whistle!
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Extensive reviews of these jet oscillations are given by Blake and Powell [17], Rockwell [208, 210],

and Verge [239]. We consider here only two examples:

– the edge tone;

– the jet screech.

jet

wake

Figure 5.10 Jet and wake.

In the first case the jet oscillations are controlled by placing a

sharp edge in the jet. The interaction of the jet with the edge

induces a complex time dependent flow. At low Mach num-

bers the flow can be described locally as an incompressible

flow (compact) and a description of the jet oscillation can

be obtained without considering sound propagation or radi-

ation [40]. As the phase condition in the feedback loop is

determined by the travel time of perturbations along the jet,

the oscillation frequency will be roughly proportional to the

main flow velocity V0 in the jet. Self-sustained oscillations

occur for those frequencies for which the phase of the signal

changes by a multiple of 2π as the signal travels around the

feedback loop. We assume an instantaneous feedback from

the jet-edge interaction towards the separation point from

which the shear layers bounding the jet emerge. The phase

shift is therefore determined by the jet.

As a rough first order estimate the perturbations travel in

the shear layer with a compromise between the velocities at

both sides of the shear layer (about 1
2
V0). A more accurate

estimate can be obtained by considering the propagation of

infinitesimal perturbations on an infinite jet as proposed by

Rayleigh [16, 189]. In spite of the apparent simplicity of the

geometry an exact analytical theory of edge tone instabilities is not available yet.

Like in the case of many other familiar phenomena there does not exist any simple “exact” theory for

jet oscillations. Actually, the crudest models such as proposed by Holger [79] are not less realistic

than apparently more accurate models.

The most reasonable linear theory until now is the one proposed by Crighton [40]. A major problem of

such a linear theory is that it only predicts the conditions under which the system is stable or unstable.

It is not able to predict the amplitude of self-sustained oscillations. At the end of this chapter we will

discuss the model of Nelson [161] for a shear-layer which is very similar to the model of Holger [79]

for an oscillating free jet. Both models do predict an amplitude for sound production by the oscillating

flow.

Placing such an edge tone configuration near an acoustic resonator will dramatically influence its

behaviour. A resonator is a limited region of space in which acoustic energy can accumulate, just like

mechanical energy can accumulate in the oscillations of a mass-spring system. The sound radiated by

the edge-jet interaction results now in a second feedback path through the oscillations of the resonator.

In such a case the resonator often imposes its resonance frequency to the system. The phase change

that a signal undergoes as it travels around the feedback loop is now not only determined by the jet

but also by the delay in the acoustic response of the participating resonator. The oscillation condition
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is still that the total phase change should be a multiple of 2π . When the frequency is close to the

resonance frequency of the resonator, a small variation in frequency results into a large phase shift

and this easily compensates the change in travel time along the jet. An example of such a system is

the flute or the recorder.

In many textbooks the flute oscillation is described as an acoustically driven edge-tone system. It

is rather tragi-comic that one describes a system which we would like to understand in terms of the

behaviour of a system which we hardly understand. As stated by Coltman [32] this is “a rather circular

procedure in view of the fact that there are many gaps in the theoretical basis for both”. Simplified

models of the recorder are proposed by Fabre [59] and Verge [241, 239, 240, 242]. It indeed appears

that a recorder is not simply an “edge tone” coupled to a resonator.

We do not always need an edge for jet oscillations. In the jet screech we have a supersonic jet which

has a cell structure due to the formation of shocks and expansions when the jet pressure at the exit is

not equal to that of the environment (figure 5.11). The interaction of acoustic perturbations with the

edges at the pipe exit results into the formation of periodically shed vortices. The vortex interaction

Figure 5.11 Under-expanded supersonic jet with typical cell structure. We observe acoustic waves generated by the interac-

tion of a vortex with the shock. The vortex is shed periodically at the nozzle lip. Acoustical feedback has been

reinforced in this experiment of Poldervaart and Wijnands (TUE) by placing reflectors around the jet nozzle.
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with a shock wave appears to generate strong acoustic pulses. In particular the interaction with the

third cell appears to result into a localized periodic source of sound. The acoustic wave travels back

towards the pipe exit via the quiescent environment of the jet. This feedback loop can be blocked

by placing a wall of absorbing material around the jet [179, 210]. This reduces the jet oscillations,

demonstrating that the feedback loop described is the one which controls the jet oscillations. A review

of some related supersonic flow oscillations is given by Jungowski [101].

Many of the features observed in a jet oscillation can also be observed in a shear layer separating a

uniform main flow from a dead water region in a cavity [209] (closed side branch in a pipe system or

open roof of a car). We will discuss these types of oscillations after we have discussed the acoustics

of some elementary type of acoustic resonators.

5.2 Some resonators

5.2.1 Introduction

Before considering other types of acoustically controlled flow instabilities we will focus our attention

on the acoustic resonator. This is an essential step because in many applications the identification of

the resonator is sufficient to find a cure to self-sustained oscillations. Furthermore resonators are also

used to impede the propagation of sound or to enhance absorption. An example of this behaviour is

the reflection of acoustic waves by an air bubble in a pipe filled with water (section 4.4.5). We start

our discussion with explaining the occurrence of resonance in a duct segment. We then will discuss

the behaviour of the Helmholtz resonator.

5.2.2 Resonance in duct segment

We will first discuss the behaviour of a pipe segment excited by an oscillating piston. The most effi-

cient way to do this is to consider this behaviour in linear approximation for a harmonically oscillating

piston. We will see at the end of this section that at critical frequencies the theory does not provide a

solution if we neglect friction. In the time domain we can understand this so-called resonance beha-

viour more easily. For this reason we will start our discussion by considering the problem in the time

domain.

Consider a pipe segment 0 < x < L closed at x = L by a rigid wall (û·n = 0) and at x = 0 by an

oscillating piston with a velocity u p(t):

u p = û p E(t) at x = 0 (5.2)

where, in order to simplify the notation, we introduced in this subsection the auxiliary function

E(t) = H (t) eiωt . (5.3)

We assume that û p/c0 ≪ 1 so that an acoustic approximation is valid. We consider only plane waves

(ωA1/2/c0 ≪ 1) and we neglect friction and heat transfer ((ν/ωA)1/2 ≪ 1). The piston starts oscil-

lating at t = 0 and we assume that initially the fluid in the pipe is quiescent and uniform (u0 = 0). In

such a case at least for short times the linear (acoustic) approximation is valid. We can now calculate

the acoustic field by using the method of characteristics as described in section 4.2. We will describe
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Figure 5.12 Wave pattern induced by a moving piston at x = 0, starting at t = 0.

the calculation in detail. However, a reader only interested in the final result can jump to the final

result, equation (5.16). The (x, t) diagram is shown in figure 5.12.

In region I we have a quiescent fluid:

pI = 0 and u I = 0. (5.4)

In region II we have the c+ waves generated at the piston:

pII = p+
II

(
t − x

c0

)
. (5.5)

Using the boundary condition u II = u p for x = 0 we find:

p+
II
(t) = ρ0c0u p(t) = ρ0c0û p E(t). (5.6)

In region III we have a superposition of the c+ waves emanating from region II and the c− waves

generated at the wall x = L:

pIII = p+
II

(
t − x

c0

)
+ p−

III

(
t + x − L

c0

)
. (5.7)

p−
III

can be determined by application of the boundary condition u III = 0 at x = L:

û p E
(

t − L

c0

)
− 1

ρ0c0

p−
III
(t) = 0. (5.8)

Hence we have:

pIII = ρ0c0û p

{
E

(
t − x

c0

)
+ E

(
t + x − 2L

c0

)}
. (5.9)

In region IV we have a superposition of the c− waves from region III and the c+ waves generated at

the piston x = 0:

pIV = p−
III

(
t + x − L

c0

)
+ p+

IV

(
t − x

c0

)
. (5.10)



100 5 Resonators and self-sustained oscillations

p+
IV

is determined by applying the boundary condition u IV = u p at x = 0:

û p E
(

t − 2L

c0

)
− 1

ρ0c0

p+
IV
(t) = û p E(t) (5.11)

and so we find:

pIV = ρ0c0û p

{
E

(
t − x

c0

)
+ E

(
t + x − 2L

c0

)
+ E

(
t − x + 2L

c0

)}
. (5.12)

In region V we have the c+ waves from region IV superimposed on the c− waves generated at the wall

x = L:

pV = p+
IV

(
t − x

c0

)
+ p−

V

(
t + x − L

c0

)
. (5.13)

As before, p−
V

is determined by applying the boundary condition uV = 0 at x = L . We find:

pV = ρ0c0û p

{
E

(
t − x

c0

)
+ E

(
t + x − 2L

c0

)
+ E

(
t − x + 2L

c0

)
+ E

(
t + x − 4L

c0

)}
. (5.14)

If we now limit ourselves to the position x = 0 we see that after each period of time 2L/c0 a new

wave is added to the original waves reflected at the wall and piston. These original waves have now

an additional phase of 2kL , where k = ω/c0.

Substituting x = 0 in (5.13) and generalizing the structure of the formula we find for 2N L/c0 < t <

2(N + 1)L/c0:

p2N = 2ρ0c0û p eiωt

{
N∑

n=0

e−2iknL H
(

t − 2nL

c0

)
− 1

2

}
. (5.15)

This structure could also have been obtained by using the method of images described in section 4.6.2.

We consider the piston as a volume source placed at x = 0+. Placing image sources in an infinitely

extended tube at x = ±2nL/c0 and summing up all the waves generated yields:

p = ρ0c0û p E
(

t − |x|
c0

)
+ ρ0c0û p

∞∑

n=1

{
E

(
t − |x − 2nL|

c0

)
+ E

(
t − |x + 2nL|

c0

)}
. (5.16)

Note that this series contains always only a finite number of non-zero terms, because for large n the

argument of the Heaviside function in E becomes negative. So we have (for t > 0)

p

ρ0c0û p

e−iωt = e−ikx

N1∑

n=0

e−2iknL + eikx

N2∑

n=1

e−2iknL,

N1 =
⌊c0t − x

2L

⌋
, N2 =

⌊c0t + x

2L

⌋
,

where ⌊q⌋ denotes the integer part of q. It may be verified that after substitution of x = 0 in (5.16)

we find (5.15), with N = ⌊c0t/2L⌋. The geometric series may be summed2, so we obtain:

p

ρ0c0û p

e−iωt =





e−ikx
1 − e−2ik(N1+1)L

1 − e−2ikL
+ eikx−2ikL

1 − e−2ikN2 L

1 − e−2ikL
if kL 6= πℓ,

e−ikx (N1 + 1)+ eikx N2 if kL = πℓ,

(5.17)

2 Note that:

N∑

n=0

an =





1 − aN+1

1 − a
if a 6= 1,

N + 1 if a = 1,

N∑

n=1

an =





a
1 − aN

1 − a
if a 6= 1,

N if a = 1.



5.2 Some resonators 101

where ℓ = 1, 2, 3 . . .. For kL 6= πℓ, and allowing for a small amount of damping by giving ω a

small negative imaginary part, p converges towards a finite value. We call this the steady state limit. If

kL = πℓ for any ℓ = 1, 2, 3 . . ., the pressure increases without limit, at least as long as linear theory

is valid. We call this a resonance of the tube, with the resonance frequencies given by 1
2
ℓc0/L . The

resulting equations are

p

ρ0c0û p

e−iωt →





−i
cos(kx − kL)

sin kL
if kL 6= πℓ,

cos(kx)
c0t

L
if kL = πℓ.

(5.18)

When resonance occurs the linearized wave equation is only valid during the initial phase of the build

up and if there are no losses at the walls. As a result of the temperature dependence of the speed of

sound the compression waves tend to steepen up and shock waves are formed. Shock waves are very

thin regions with large velocity and temperature gradients in which viscous force and heat transfer

induce a significant dissipation [5, 30]. This extreme behaviour will, however, only occur in closed

tubes at high pressures or at high amplitude (section 4.2).

In an open tube at high amplitudes vortex shedding at the pipe end will limit the amplitude [46]. If

we assume an acoustic particle displacement at the open pipe end which is large compared to the tube

diameter d we can use a quasi-stationary model to describe (locally) the flow. This is a model similar

to the one discussed for an orifice in section 4.4.3.

Let’s assume that the tube is terminated by a horn as shown in figure 5.13. In such a case flow sep-

x = 0 x = L

u′

u′

Figure 5.13 Flow at an open pipe termination at high acoustic amplitudes.

aration will occur only while the acoustic flow is outgoing (figure 5.13a). Assuming a dominant fun-

damental harmonic û sinωt , the power We corresponding to the energy losses due to the formation of

the jet can be calculated from:

We = S

T

∫ T

0

u′1p dt (5.19)

where 1p = − 1
2
ρ0u′2 for 0 < t < 1

2
T and u′ > 0 because a free jet is formed which cannot sustain

a pressure difference3 . In terms of the Vortex Sound theory of Howe we would say that when the jet

3We assume that due to turbulence all the kinetic energy in the jet is dissipated further downstream. We assume also

that flow separation occurs at the junction between the pipe and the horn. This is quite pessimistic, since the separation is

expected to be delayed considerably by the gentle divergence of the horn.
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is formed during the outflow there is a deviation from potential flow resulting into p′ = p′
ex, while

potential flow theory would predict p′ = p′
ex − 1

2
ρ0u′2. This is due to the vorticity in the jet which

results into a source of sound, that we can represent by a pressure source 1p = − 1
2
ρ0u′2.

For 1
2
T < t < T and u′ < 0 we have:

1p = 0 (5.20)

because we have a potential inflow into the pipe. Hence:

We ≃ −
1
2
ρ0û3S

T

∫ 1
2 T

0

sin3 ωt dt = − 1

3π
ρ0û3S. (5.21)

The amplitude of the acoustic field in the tube can now be estimated by assuming that the losses We

at the open end balance the acoustic power Wp delivered by the piston:

Wp = S

T

∫ T

0

u p p′(x = 0) dt. (5.22)

Assuming that friction losses at the pipe wall are negligible we have:

Wp ≃ 1
2

Su pρ0c0û, (5.23)

where û is measured at the open pipe exit. Hence we find from We + Wp = 0:

û

c0

=
√

3π

2

u p

c0

. (5.24)

The model proposed here is valid when the Strouhal number based on the diameter and the acoustical

velocity is smaller than 1, i.e. ωd < û.

The non-linear behaviour of resonators, occurring for example with flow separation, makes such

devices efficient sound absorbers. Sound is “caught” by the resonator and dissipated by vortex shed-

ding.

In many cases the most significant losses are friction losses at the wall. We will discuss the influence of

radiation from an open pipe end in section 6.7. When a plane wave approximation is valid a harmonic

acoustic field in a pipe with uniform cross section can in the absence of mean flow still be described

by:

p′ = p+ eiωt−ikx +p− eiωt+ikx . (5.25)

The wave number k, however, is now complex and is in first order approximation given by:

k = k0 + (1 − i)α (5.26)

where k0 = ω/c0 and α is the damping coefficient given by equation (2.13), derived in section 4.5.

(In a liquid one should assume γ ≃ 1.)

Damping also affects the impedance Zc of an infinite tube. To leading order approximation one finds

[123]:

Zc = p′

u′ = ±Z0

k0

k
(5.27)
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where the sign indicates the direction of the wave propagation (+x or −x) and Z0 = ρ0c0. We further

see that wave speed c is affected:

c = c0

Re(k)

k0

(5.28)

While friction is relatively easily taken into account for harmonic waves, in the time domain friction

involves a convolution integral which makes the solution of problems more difficult to analyse [30].

We will now further limit our discussion to the case of harmonic waves. Hence we seek only for a

steady state solution and we assume that linear acoustics is valid.

As an example we consider a piston with a velocity u p = û p eiωt at x = 0 exciting a tube of cross

section S closed at x = L by a rigid wall. We neglect the radiation losses at x = L (which we will

discuss further in section 6.7). The boundary conditions at x = 0 and x = L can be written in terms

of equation (5.25) as:

û p = p+ − p−

Zc

(5.29)

and

0 = p+ e−ikL −p− eikL (5.30)

so that we find:

p+ = Zcû p

1 − e−2ikL
. (5.31)

In contrast to our earlier example p+ does not become infinitely large with resonance because k is

complex. The impedance Z p seen by the piston at x = 0 is given by:

Z p = p+ + p−

û p

= −i Zc cotg(kL). (5.32)

Upon resonance, Re(k) = nπ/L with n = 1, 2, 3, ..., we find for the case αL ≪ 1:

Z p ≃ Zc

αL
. (5.33)

When the damping (αL) predicted by laminar boundary layer theory is small the oscillation amp-

litudes may become so large that the acoustical boundary layers become turbulent. This implies a

non-linear energy dissipation as discussed in section 4.5.3.

5.2.3 The Helmholtz resonator (quiescent fluid)

The resonance conditions for a duct segment (5.25) imply that the tube length should be of the order

of magnitude of the acoustic wave length (kL = O(1)). In many technical applications this would

imply that resonators used to absorb sound should be large (and expensive). A solution to this problem

is to use a non-uniform pipe in the shape of a bottle. When the bottle is small compared to the acoustic

wave length (for low frequencies), the body of the bottle acts as an acoustic spring while the neck of

the bottle is an acoustic mass (figure 5.14).
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Sb

V p′
in

u′
in ≃ 0

u′
n

ℓ

p′
ex

Sn

K
m

Figure 5.14 Helmholtz resonator as mass-spring system.

If the cross-sectional area Sb of the bottle is large compared to the cross sectional area Sn of the neck,

the acoustic velocities in the bottle will be small compared to those in the neck. Hence we may in

first order approximation assume that the pressure and density perturbations p′
in and ρ ′

in in the bottle

are uniform. Furthermore, as we have assumed the bottle neck (length ℓ) to be acoustically compact,

i.e. short compared to the wave length, kℓ ≪ 1, we can neglect compressibility and integrate the

line integral of the momentum equation along a streamline from a point inside to a point outside as

follows. Use identity (1.30) and the fact that ω×v is orthogonal to a streamline to obtain

ρ0

∫ ex

in

∂v′

∂t
·ds + 1

2
ρ0(u

′
ex

2 − u′
in

2)+ (p′
ex − p′

in) =
∫ ex

in

µ∇2v′ ·ds (5.34)

Assuming that the streamline does not change in time (for example the center streamline) we have

∫ ex

in

∂v′

∂t
·ds = d

dt

∫ ex

in

v′ ·ds (5.35)

The velocity line integral evidently scales on a typical length times a typical velocity. If friction effects

are minor and the velocity is reasonably uniform, we can use the neck velocity u′
n with a corresponding

length being the neck length ℓ, added by a small end correction δ (4.51) to take into account the inertia

of the acoustic flow at both ends just outside the neck (inside and outside the resonator); see section

5.2.3.1. Then we have:

∫ ex

in

v′ ·ds = (ℓ+ 2δ)u′
n. (5.36)

The stress term line integral is far more difficult to assess. Apart from u′
n itself, it will depend on flow

profile, Reynolds number, wall heat exchange, turbulence, separation from sharp edges, and maybe

more. Following Melling [135], we will take these effects together in a resistance factor R, which will

a priori be assumed to be relatively small, to have resonance and a small decay per period in the first

place.

∫ ex

in

µ∇2v′ ·ds ≃ −Ru′
n (5.37)

Due to separation from the outer exit, we have with outflow uin ≃ 0 with uex = u′
n jetting out, while

similarly during inflow, uex ≃ 0 with uin = u′
n jetting into the cavity. The pressure in the jets, however,

has to remain equal to the surrounding pressure (p′
ex and p′

in respectively) because the boundary of the

jet cannot support a pressure difference. Therefore, we have altogether

ρ0(ℓ+ 2δ)
d

dt
u′

n + 1

2
ρ0u′

n|u′
n| + Ru′

n = p′
in − p′

ex (5.38)
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In order to have a second equation between p′
n and u′

n we apply the integral mass conservation law

on the volume V of the bottle. The change of mass must be equal to the flux through the bottle neck,

which is in linearised form for the density perturbation ρ ′
in:

V
dρ ′

in

dt
= −ρu′

n Sn ≃ −ρ0u′
n Sn. (5.39)

Assuming an adiabatic compression of the fluid in the bottle we can eliminate ρ ′
in by using the con-

stitutive equation:

p′
in = c2

0ρ
′
in. (5.40)

Elimination of ρ ′
in and u′

n from (5.38) by using (5.39) and (5.40) yields:

(ℓ+ 2δ)V

c2
0 Sn

d2 p′
in

dt2
+ V 2

2ρ0c4
0 S2

n

dp′
in

dt

∣∣∣∣
dp′

in

dt

∣∣∣∣ + RV

ρ0c2
0 Sn

dp′
in

dt
+ p′

in = p′
ex. (5.41)

When the damping is small, there exist solutions without external forcing p′
ex, i.e. resonance solutions.

(ℓ+ 2δ)V

c2
0 Sn

d2 p′
in

dt2
+ p′

in = 0.

Hence we see that the Helmholtz resonator reacts as a mass-spring system with a resonance frequency

ω0 given by:

ω2
0 = Snc2

0

(ℓ+ 2δ)V
. (5.42)

When the amplitude is small, the damping will in general be linear. For larger amplitudes the damping

will be nonlinear, which among other things generates other harmonics than the frequency of the

driving force; see section 5.2.4. A spectacular effect of additional damping occurs when the flow in

the neck is superimposed on a mean flow, forcing vortex shedding from the exit even without nonlinear

terms; see section 5.2.5.

5.2.3.1 Intermezzo: End correction

If, as is the case in many technical applications, an orifice is used instead of bottle neck (ℓ = 0), the

use of a reasonable estimate for δ is important. For an orifice with a circular aperture we have in the

limit of small k

δ = 0.85
( Sn

π

) 1
2

. (5.43)

For an unflanged thin-walled open-pipe end we can use for small k the approximation:

δ = 0.61
( Sn

π

) 1
2

. (5.44)

See also section 6.7. Values of δ for various other geometries are given by Ingard [91].
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5.2.4 Non-linear losses in a Helmholtz resonator

The theory described in the previous section assumes that there is no-flow separation. Flow separa-

tion will certainly occur when the acoustic particle displacement has an amplitude comparable to the

diameter of the neck. The Strouhal number Sr = ω(Sn/π)
1/2/u′

n yields a measure for this effect.

When Sr ≪ 1 flow separation will only occur locally at sharp edges of the neck (or orifice). When

Sr = O(1) flow separation will occur even if these edges are rounded off. In principle the effect of

flow separation can under these circumstances be described by assuming the formation of a quasi-

stationary jet as for the pipe end (section 5.2.2). A multiple-scales solution for this problem may be

found in section 8.3.

In the case of an orifice with sharp edges, one should take into account the fact that the jet diameter

tends to be smaller than the orifice diameter by a factor β called the vena contracta factor. For a thin

orifice β ≃ 0.6 [44]. Using a quasi-stationary Bernoulli equation this implies an enhancement of the

pressure loss1p by a factor β−2. Furthermore losses occur for an orifice in both flow directions, while

in a pipe with horn we assumed losses to occur only upon outgoing acoustic flow.

5.2.5 The Helmholtz resonator in the presence of a mean flow

We consider a Helmholtz resonator of volume V , neck length ℓ and neck surface Sn in which we inject

a continuous volume flow Q0 = u0Sn (figure 5.15). Neglecting the viscous dissipation, but otherwise

Q0

V

p′
in

u′
in ≃ 0

ℓ

u0 + u′
n Sn

Figure 5.15 Helmholtz resonator with a mean flow.

using the same equation as before we now find

ρ0(ℓ+ 2δ)
du′

n

dt
+ 1

2
ρ0(u0 + u′

n)
2 + p′

ex = p0 + p′
in (5.45)

where we used the fact that u′
ex = u′

n because the total flow is always an outflow. Further, we assumed

that the pressure in the jet is uniform and equal to p′
ex, the fluctuations due to an external acoustic

source. (This is a reasonable assumption for u0/c ≪ 1 and ω(Sn/π)
1/2/u0 ≪ 1). Separating the zero

and first order terms in the acoustic perturbations and neglecting second order terms we find

p0 = 1
2
ρu2

0 (5.46)

and

ρ0(ℓ+ 2δ)
du′

n

dt
+ ρ0u0u′

n + p′
ex = p′

in. (5.47)
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Using the linearized mass conservation law we have neglecting terms of order (u0/c0)
2:

V
dρ ′

in

dt
= −(ρ0u′

n + ρ ′
exu0)Sn. (5.48)

Eliminating ρ ′
in by using the constitutive equation p′

in = c2
0ρ

′
in and eliminating p′

in from (5.47) and

(5.48) we find:

d2u′
n

dt2
+ u0

ℓ+ 2δ

du′
n

dt
+ ω2

0un = −ω
2
0 M0

ρ0c0

p′
ex − 1

ρ0(ℓ+ 2δ)

dp′
ex

dt
.

ω0 is defined by equation (5.42) and M0 = u0/c0. For a harmonic excitation p′
ex = p̂ex eiωt we find:

ρ0c0ûn

p̂ex

= − M0 + iω1ω/ω
2
0

1 − (ω/ω0)2 + i M0ω1ω/ω
2
0

(5.49)

where ω1 = c0/(ℓ+2δ). We see that the mean flow induces a damping factor which we might a priori

not have expected because we did not assume friction losses nor heat transfer.

The key assumption which has introduced damping is that we have assumed that the pressure perturb-

ation at the pipe exit is equal to the environment pressure perturbation pex. This is true, because the

flow leaves the exit as a jet4, which implies separation of the flow at the pipe exit and a Kutta condition

to be added to an inviscid model (section 5.1)! This implies that a varying exit velocity un modulates

the vorticity shed at the edges of the pipe exit, which is, on its turn, a loss of kinetic energy for the

acoustic field. This confirms that the Kutta condition is indeed a quite significant assumption [39].

5.3 Green’s function of a finite duct

Formally, the Green’s function of a finite duct can be obtained if we neglect friction and losses at the

pipe terminations by using the method of images (section 4.6.2 and section 5.2.2). For a pipe segment

0 < x < L closed by rigid walls a source at x = y in the pipe segment is represented by a row of

sources (in an infinitely long pipe) at positions given by (figure 5.16)

xn = ±(2n + 1)L ± y; n = 0, 1, 2, 3, ... (5.50)

The Green’s function is the sum of all the contributions of these sources:

Figure 5.16 Images of source at x = y.

4A very interesting proof of the fact that a quasi-stationary subsonic free jet cannot sustain any pressure difference with

the environment is provided by Shapiro [223].
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g(x, t|y, τ ) = 1

2c0

∞∑

n=0

{
H

(
t − τ + x + (2n + 1)L − y

c0

)

+ H
(

t − τ + x + (2n + 1)L + y

c0

)

+ H
(

t − τ − x − (2n + 1)L − y

c0

)

+ H
(

t − τ − x − (2n + 1)L + y

c0

)}
. (5.51)

It is clear that such a formal solution has no simple physical interpretation.

Another representation for the 1-D Green’s function on [0, L] that might be useful in some applica-

tions is found by a series expansion of the Fourier transform ĝ of g:

ĝ =
∞∑

n=0

An fn(x) (5.52)

in a suitable basis { fn}. In this case we will not start from elementary solutions of the wave equation.

The functions fn we will consider will (only) satisfy the boundary conditions at x = 0 and x = L , so

that their sum will automatically satisfy these conditions if this sum converges uniformly. Hence we

will construct now a tailored Green’s function (section 3.1). Furthermore, it is evidently necessary that

the basis { fn} is complete, and convenient that it is orthogonal to some suitable inner product. Let’s

now for simplicity assume that the pipe segment is limited by a rigid wall at x = 0 and an impedance

ZL at x = L . Consider:

fn = sin(Knx) (5.53)

with Kn determined by the equation

tan(Y )

Y
= i

ZL

kL
(5.54)

with Kn L = Y . Note that for n → ∞ (ZL 6= 0)

Kn L ≃ (n + 1
2
)π + ikL

(n + 1
2
)π ZL

+ ... (5.55)

so that for large n, fn approaches the Fourier-sine series basis. The number of solutions between 0 and

(n + 1
2
)π (for n → ∞) is not always exactly n. Depending on ZL/kL it may differ by 1. For example,

if ZL/kL = iC and C is real, there is no purely imaginary solution Y = iσ with tanh(σ )/σ = −C if

C > 0 or C < −1, and exactly one solution if −1 < C < 0, which disappears to infinity if C → 0.

Finally, we note that { fn} is orthogonal to the L2 inner product:

( fn, fm) =
∫ L

0

fn(x) fm(x) dx . (5.56)

(Note: not .. f ∗
m(x) ..), which is easily seen by direct integration:

If n 6= m:

∫ L

0

sin(Knx) sin(Km x) dx = sin(Kn L − Km L)

2(Kn − Km)
− sin(Kn L + Km L)

2(Kn + Km)
= 0 (5.57)
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after application of (5.54).

If n = m:
∫ L

0

sin2(Knx) dx = 1
2

L − sin(2Kn L)

4Kn

= 3n. (5.58)

We now seek an expression for the Green’s function, defined by:

d2ĝ

dx2
+ k2ĝ = −δ(x − y)

c2
0

(5.59)

in the form (5.52). Substitution of the series, multiplication left- and right-hand side by fm , and integ-

rating over [0, L] yields (because of orthogonality):

(k2 − K 2
m)3m Am = − fm(y)/c

2
0. (5.60)

Hence we have:

ĝ(x, y) = 1

c2
0

∞∑

n=0

fn(x) fn(y)

(K 2
n − k2)3n

. (5.61)

We see explicitly that:

i) the Green’s function is indeed symmetric in x and y (source and observation points) as stated

earlier in section 3.1 (reciprocity), and

ii) any source with a frequency ω = Kn c0 (so that Kn = k) yields an infinite field, in other

words: resonance. Note that in general Kn is complex, so that such a source strength increases

exponentially in time.

When the frequency ω of the source is close to a resonance frequency this resonance will dominate the

response of the pipe segment and we can use a single mode approximation of the Green’s function.

This is the approximation which we will use when discussing the thermo-acoustic oscillations in a

pipe segment (Rijke tube, section 5.5).

5.4 Self-sustained oscillations of a clarinet

5.4.1 Introduction

The coupling of acoustic oscillations to mechanical vibrations is a technically important problem

[248]. In some case such a coupling can cause the failure of a security valve. Instead of looking at

a technical application we are going to consider a musical instrument. The model used is very crude

and only aims at illustrating the principles of two methods of analysis:

– the stability analysis;

– the temporal simulation.

In the first case we consider a linear model and deduce the minimal blowing pressure necessary to

obtain self-sustained oscillations. In the second case we consider a simplified non-linear model de-

veloped by McIntyre et al. [132] which can be used for time domain simulation. The aim of the

simplification is to allow for a real time simulation of a clarinet! We will restrict our discussion to the

principle of the solution of the problem. The results of the calculations can be found in the literature.
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5.4.2 Linear stability analysis

A simplified model of a reed instrument like a clarinet is a cylindrical pipe fed by a pressure reservoir

P0 (the mouth) through a valve (reed). The reed has a mass mr and is maintained at a rest position hr

by a spring of constant Kr . The aperture h of the valve is assumed to be controlled by the pressure

difference 1p = P0 − p′ between the mouth pressure P0 and the acoustic pressure p′ in the pipe just

behind the reed (figure 5.17). The equation of motion of the reed is:

h uB

mr

Kr

Sr

p′

u′

L

S

p′ ≃ 0

Figure 5.17 Simplified clarinet.

mr

d2h

dt2
+ γr

dh

dt
+ Kr (h − hr ) = −Sr(P0 − p′) = −Sr1p. (5.62)

γr is the damping coefficient of the reed, Sr is the surface of the reed and h is the aperture of the reed

channel through which the air flows from the mouth to the pipe. We assume that the flow in the reed

channel is quasi-stationary and that at the end of the reed channel a free jet is formed. Neglecting

pressure recovery by mixing of the jet with the air in the pipe we assume the pressure p′ to be uniform

in the jet and equal to the pressure at the pipe inlet.

The flow volume Qr of air into the pipe is given in this approximation (if we neglect friction) by the

equation of Bernoulli:

Qr = uBhw = hw(2|1p|/ρ) 1
2 sign(1p) (5.63)

where w is the width of the reed channel and uB the (Bernoulli) velocity of the air in the jet. The

acoustic velocity u′ at the entrance of the pipe (x = 0) is given by:

u′ = Qr

S
(5.64)

where S is the pipe cross sectional area. If we consider a small perturbation of the rest position (p′ ≪
P0) we can linearize the equations and consider the behaviour of a harmonic perturbation p′ = p̂ eiωt .

The steady state values of h and Qr are given by:

h0 = hr − Sr P0

K
, Q0 = u0h0w, u0 = (2P0/ρ0)

1
2 .

The linear perturbations are governed by the equations:

(−ω2mr + iωγr + Kr )ĥ = Sr p̂ (5.65a)

ûB = −u0 p̂

2P0

(5.65b)

Q̂r = w(ĥu0 + h0ûB). (5.65c)
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We further assume that the acoustical behaviour of the pipe is described by an impedance Z p(ω) so

that:

p̂ = Z p Q̂r/S. (5.65d)

Since the system of equations 5.65a–5.65d is homogeneous, it can only be satisfied if the determinant

vanishes. This condition yields an equation from which we can calculate ω for a given P0:

−ω2mr + iωγr + Kr

Sru0

=
( S

Z pw
+ h0u0

2P0

)−1

. (5.66)

If Im(ω) > 0 the perturbations are damped, and if Im(ω) < 0 the perturbations grow in time. It is clear

that the steady state amplitude in a clarinet can only be reached by non-linear saturation of the system

because linear theory predicts a monotonically growing or decaying amplitude. When Im(ω) = 0

the perturbations are neutral, they do not change in amplitude. If we assume Im(ω) = 0 equation

(5.66) becomes an equation for Re(ω) and P0. This allows to determine the threshold of pressure

above which oscillations occur and the frequency of the most unstable mode which starts oscillating.

A discussion of the solution of this clarinet model, including non-linear effects, is given by Gazengel

[68] and Kergomard in [76].

It is interesting to note that in some cases the inertia of the flow in the reed which we neglected is

the main driving force for instability. This is for example the case in harmonium reeds [228] and for

valves in water like river gates [107]. A discussion of the flow through double reeds and the vocal

folds is given by Hirschberg [76].

5.4.3 Rayleigh’s Criterion

An interesting analysis of the problem of clarinet oscillation is already obtained by considering the

very simple quasi-stationary reed model:

h = hr − Sr1p

K
and Qr = hw

√
2|1p|
ρ0

sign(1p).

When 1p = 0 there is obviously no flow because u =
√

2|1p|/ρ0 sign(1p) vanishes. When 1p >

hr K/Sr = 1pmax the reed closes and h = 0. Between these two zero’s of Qr it is obvious that

Qr > 0 and should be a maximum at a pressure difference which we call critical 1pcrit ≃ 1
3
1pmax.

The acoustical power

W = 1

T

∮
p′ dV = 1

T

∫ T

0

p′ dV

dt
dt = 1

T

∫ T

0

p′ Q ′
r dt

produced by the fluctuating volume flow Q ′
r = dV

dt
should at least be positive. We consider here an

oscillation period T in order to sustain oscillations. Fluctuations Q ′
r = (dQr/dp′)p′ in Qr induced

by pressure fluctuations in the pipe are negative for 1p < 1pcrit and positive for 1p > 1pcrit. This

explains the presence of a blowing pressure threshold below which the clarinet does not play. The

criterion
∮

p′ Qr dt > 0 is called the Rayleigh criterion for acoustical instability. We will use it again

in the analysis of thermo-acoustical oscillations.
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5.4.4 Time domain simulation

Early attempts to describe the non-linearity of a clarinet were based on a modal expansion of the

acoustic field in the pipe. This implies that the Green’s function was approximated by taking the

contribution of a few (one to three) modes5 into account (equation (5.61)). The typical procedure is

further to assume a weak non-linearity which implies that a perturbation method like the method of

averaging can be used to calculate the time dependence of the modes [67]. A full solution is obtained

by the method of harmonic balance discussed by Gilbert [69].

As stated by McIntyre [132] the non-linearity in a clarinet is not weak. In fact the most spectacular

non-linearity is due to the limited movement of the reed upon closing. The collision of the reed against

the wall of the mouthpiece can result in a chaotic behaviour [68]. The key feature of a clarinet mouth-

piece is that this abrupt non-linearity is replaced by a softer non-linearity because upon touching the

wall the reed gradually closes as it is bent on the curved wall of the mouthpiece (called the lay) and

its stiffness increases because the oscillating part is becoming shorter.

However, the high resonance frequency of the reed ω2
r = Kr/mr suggests that a quasi-stationary

model of the reed could be a fair first approximation. Hence McIntyre [132] proposes to use the

steady approximation of (5.62):

Kr (h − hr) = −Sr(P0 − p′) = −Sr1p (5.67)

combined with (5.63), (5.64) and (5.65d). The numerical procedure is further based on the knowledge

that the acoustic pressure p′ at the reed is composed of an outgoing wave p+ and an incoming wave

p− (result of the reflection of earlier p+ wave at the pipe end):

p′ = p+ + p−. (5.68)

The pipe has a characteristic impedance Zc (= ρ0c0 when friction is neglected) so that:

u′ = p+ − p−

Zc

. (5.69)

If we now define the reflection function r(t) as the acoustic wave p− induced by a pressure pulse

p+ = δ(t), we find:

p− = r ∗ p+ (5.70)

where ∗ indicates a convolution (equation C.10). Elimination of p+ and p− from (5.68)–(5.70) yields:

p′ = Zcu′ + r ∗(Zcu′ + p′) (5.71)

where u′ is calculated at each time step by using (5.63), (5.66), and (5.67):

u′ = w

S

(
hr − Sr1p

Kr

)(2|1p|
ρ0

) 1
2

sign(1p). (5.72)

The solution is obtained by integrating (5.71) step by step, using the previous value of p′ to calculate

u′ in the convolution of the right-hand side (5.71).

5Standing waves in the pipe closed at the reed end.
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The interesting point in McIntyre’s approach is that he uses a reflection function r(t) (which is the

Fourier transform of R(ω) = (Z p −ρc)/(Z p +ρc)) rather than z p, the Fourier transform of Z p. Using

z p would have given the integral equation:

p′ = z p ∗u′ (5.73)

which can be combined with (5.72) to find a solution. It appears, however, that (5.73) is a numerically

slowly converging integral because z p has an oscillatory character corresponding to the response p′

of a close tube to a pulse u′ = δ(t) (tube closed at pipe inlet).

u′ = δ(t)

p′ = z p

p+ = δ(t) p−

p− = r

a)

b)

y = 0 y = L

Figure 5.18 Difference between z p and r .

The reflection function r is in fact calculated in a semi-infinite tube and therefore has not such an

oscillatory character (figure 5.18). So it appears that a Green’s function which is not tailored may be

more appropriate than a tailored one.

5.5 Some thermo-acoustics

5.5.1 Introduction

We have focused our attention until now on wave propagation and interaction of acoustic fields with

isentropic flows. In section 2.6 we have seen that variations s′ in entropy should act as a volume

sound source (if we use p′ as acoustic variable). We will now discuss such effects as an interesting

example of self-sustained oscillations in resonators. At low Mach numbers in gases, entropy variations

due to dissipation are negligible (order 0.2 M2). Entropy fluctuations occur mainly as a result of

combustion (or vapour condensation) in the bulk of the flow or as a result of heat conduction at the

wall. Mixing of hot and cold gases results into fluctuations of the entropy caused by the unsteady

heat conduction (equation 2.87). For ideal gases one can, however, show that this sound source has

a vanishing monopole strength (Morfey [144], Obermeier [164]). Convection of entropy spots during

the mixing of a hot jet with the environment dominates the low Mach number behaviour (Crighton

[42], Morfey [144]). This sound source has the character of a dipole.

Combustion instability is often triggered by the strong dependence of combustion processes on tem-

perature. The reaction rates depend exponentially on T . Hence temperature fluctuations associated

with pressure fluctuations will induce variation in combustion rate. This implies a source of sound

which, if it is in phase with the acoustic field, can lead to instability. Even in free space this implies

a strong increase in sound production. We experience this effect when we ignite the flame of a gas
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burner. Placed in a closed tube a flame can couple with standing waves. This type of instability is

known in aircraft engine as a re-heat buzz (Keller [103], Bloxsidge et al. [19]). The “singing flame”

has already been discussed extensively by Rayleigh [189]. More recent information on the interaction

of combustion with acoustic is found in Crighton et al. [42], Candel & Poinsot [27], McIntosh [131],

and Putnam [185].

We will now focus our attention on the effect of unsteady heat transfer at walls. This type of interaction

has already attracted the attention of Rayleigh [189] in the form of the Rijke tube oscillation. This

experiment was carried our first by De Rijke around 1848 [207]. He found that placing an electrically

heated gauze in the lower part of a vertical tube open at both ends would induce strong acoustical

oscillations. De Rijke considered the use of such a device as an organ pipe. The subject has been

studied as a model for combustion instability by many scientists, among which Merk [136], Kwon

and Lee [111], Bayly [9], Heckl [74], Gervais [177], and Raun [188].

Closely related phenomena of acoustical oscillations induced by a temperature gradient in a tube

is used by scientists to detect the level of liquid Helium in a reservoir. This phenomenon has been

extensively studied by Rott [150, 213, 214, 215, 216, 258], in a very systematic series of papers. The

fascinating aspect of this phenomenon is that it can be inverted, acoustic waves interacting with a wall

induce a transfer of heat which can be used to design an acoustically driven cooling machine. Such

engines have been studied by Wheatley [252], Radebaugh [186] and Swift [231]; see also [172]. The

ultimate engine consists of two thermo-acoustic couples (elements with a a temperature gradient): one

at the hot side which induces a strong acoustic field and a second at the cold side which is driven by

the first (figure 5.19) [232]. This is a cooling machine without moving parts!

driver cooler

very hot cold very cold cold

Figure 5.19 Heat driven acoustical cooling engine.

We will limit our discussion to a simple analysis of the Rijke tube oscillation.

5.5.2 Modulated heat transfer by acoustic flow and Rijke tube

We consider a thin strip of metal of temperature Tw and widthw aligned along the mean flow direction

in a uniform flow u∞. Along the strip viscous and thermal boundary layers δV (x) and δT (x) will

develop. We assume that δV /w and δT /w are small and that ωw/u∞ ≪ 1, while δV /δT = O(1). For

small fluctuations u′ of u∞ around an average value u0 the fluctuations in the heat transfer coefficient

can be calculated as described by Schlichting [220] for any mean flow of the type u0 ∼ xn (wedge

flow). We now limit ourselves to the flat plate (n = 0) and we use a low frequency limit from which the

memory effect will become more obvious than from Schlichting’s solution. We further approximate

the velocity and temperature profiles in the boundary layers by:

u(y) = u∞
δV

y (5.74)

T (y)− Tw

T∞ − Tw
= y

δT

. (5.75)
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Such an approximation is only valid for low frequencies and small perturbation amplitudes, corres-

ponding to ωw/u∞ ≪ 1 and u′/u0 ≪ 1. Outside the boundary layers the flow is uniform. In this

approximation the viscous stress τw at the wall is given by:

τw = η
u∞
δV

(5.76)

and the heat transfer q at the wall by:

q = −K
(∂T

∂y

)
y=0

= −K
T∞ − Tw

δT

. (5.77)

Using an integral formulation of the conservation law in boundary layer approximation we find [220]:

[ ∂
∂t

+ 1

3
u∞

∂

∂x

]
δ2

V = 4ν − 2δ2
V

u∞

∂u∞
∂t

(5.78a)

[ ∂
∂t

+ 2

3
u∞

( δT

δV

) ∂
∂x

]
δ2

T = 4a + 1

3
u∞

( δT

δV

)3 ∂

∂x
δ2

V for δT < δV (5.78b)

[ ∂
∂t

+ u∞
(

1 −
( δT

δV

)2) ∂
∂x

]
δ2

T = 4a − u∞
(2

3
− δT

δV

) ∂
∂x
δ2

V for δT > δV (5.78c)

where a is the thermal diffusivity of the gas:

a = K

ρCP

. (5.79)

Note that we have used the assumption (Tw − T∞)/T∞ ≪ 1 in order to keep the equations simple.

This is certainly a very crude approximation in a Rijke tube. The boundary conditions are:

δV (0) = δT (0) = 0 at x = 0. (5.80)

In air we have Pr < 1 and hence in general δV < δT . We will, however, use further the assumption

Pr = 1 because we do not expect an essentially different physical behaviour.

The stationary solution of (5.78a) is:

δV =
(12νx

u0

) 1
2

(5.81)

while δT can be calculated from (5.78b):

δT = δV . (5.82)

Using the notation δ0 = δT = δV for the stationary solution we find in linear approximation:

[ ∂
∂t

+ 1

3
u0

∂

∂x

]
δ′

V = − δ0

u0

∂u′

∂t
− 1

3
u0

(δ′
V

δ0

+ u′

u0

)∂δ0

∂x
(5.83a)

[ ∂
∂t

+ 2

3
u0

∂

∂x

]
δ′

T = +1

3
u0

∂δ′
V

∂x
+ 1

3
u0

(δ′
V − δ′

T

δ0

− u′

u0

)∂δ0

∂x
, (5.83b)
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hot grid

x=L

x=0

x=−L u0

✻

Figure 5.20 Rijke tube.

where u∞ = u0 + u′. These equations can be solved by integration along the

characteristics: (x = 1
3
u0t) for (5.83a) and (x = 2

3
u0t) for (5.83b). We see

that the perturbations in δ′
T move along the strip with a phase velocity 2

3
u0

which implies a “memory” of the heat transfer q for perturbations u′ of the

mean flow. This memory is crucial for the understanding of the Rijke tube

instability.

The Rijke tube is an open pipe of length 2L (figure 5.20). In the pipe we

place a row of hot strips (or a hot gauze). When the tube is vertical a flow u0

will be induced by free convection (the tube is a chimney). When the tube is

horizontal we impose u0 by blowing.

It appears that the tube starts oscillating at its fundamental frequency f0 =
c/4L when the heating element is placed at x = − 1

2
L , at a quarter of the tube

length in the upstream direction (at the lower part of the tube for a vertical

tube). We will now explain this. Note that some excitation of higher modes

can be obtained but these are weak because of increased radiation losses at

high frequencies. Hence we will assume that only the fundamental mode can

be excited. This corresponds to a single mode expansion of the Green’s func-

tion (5.61). As proposed by Rayleigh [189] we start our analysis by placing

the warming element at the center of the tube (x = 0).

As shown in figure 5.21 the acoustic velocity u′ at x = 0 will vanish for the fundamental mode. The

variation of heat transfer q is only due to the temperature fluctuations T ′ = (γ − 1)γ −1 p′ of the gas

in the main flow. If we neglect the “memory” effect of the heat capacity of the boundary layers the

heat flux q decreases when p′ increases because Tw − T is reduced.

The acoustic effect of the unsteady heat transfer q is given in a quantitative way by the linearized

equation 2.69 in which (2.70) has been substituted:

1

c2
0

∂2 p′

∂t2
− ∇2 p′ ≃ ρ0

c2
0T0

(∂T

∂ρ

)
S

∂

∂t
∇·q (5.84)

which corresponds to a volume source term ∂2(βρ f )/∂t2 in (2.65) or in linearized form ∂(m/ρ0)/∂t .

x = L

x = 0

x = −L u0

p′ = p̂(x) cosωt

u′ = −d p̂

dx

sinωt

ρ0ω

Figure 5.21 Pressure p′ and acoustic velocity u′ distribution for the fundamental mode.
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As derived in section 2.7 the power W produced by the source is (2.82):

W =
∫∫∫

V

〈
p′ m

ρ0

〉
dV . (5.85)

This equation can also be derived from the equation for the work A performed by volume variation

dV :

A =
∮

p dV (5.86)

which can be written as:

A =
∫ T

0

p
(dV

dt

)
dt (5.87)

where dV/dt =
∫

m/ρ0 dV and T = 2π/ω is the oscillation period. The rate of volume injection

dV/dt corresponds to the volume integral
∫

V
∇·q dx =

∫
S

q ·n dσ which is the integral of the heat

transfer from the heating element. Furthermore, as the transfer of heat from the wall to the gas implies

an expansion of the gas we can also understand (5.84) in terms of (5.87).

We now easily understand that as q is opposite in phase with p′ the presence of a hot element at x = 0

will damp oscillations of the fundamental mode of the pipe. Hence we understand that the Rijke tube

oscillation is due to modulation of q by the acoustic velocity fluctuations u′. An optimal amplitude of

q is obtained just at the end of the pipe at x = −L where u′ has the largest amplitude. However, at this

place p′ is close to zero so that we see from (5.85) that the source is ineffective at this position. We

therefore see that the position x = − 1
2

L is a compromise between an optimum for p′ and an optimum

for q. We still have to understand why it should be x = − 1
2

L and not x = 1
2

L . The key of this is that

for x < 0 the pressure p′ increases when the acoustic velocity u′ enters the pipe (u′ > 0) upwards

while for x > 0 the velocity is downwards at that time. If the heat transfer would react instantaneously

on u′ then q would vary as sin(ωt) while p′ varies as cos(ωt). As a consequence W integrated over

a period of oscillation would vanish. Hence the occurrence of oscillations is due to a delay τ in the

reaction of q on u′. As the delay τ is due to the “memory” of the boundary layer we expect that τ > 0,

since the boundary layer integrates, and cannot anticipate on perturbations of u′.

u′(x > 0, t)

✁✁☛
q(x, t)

❄

u′(x < 0, t)❆
❆❑

τ✛✲

p′(x, t)PP✐
t

Figure 5.22 Sketch of time dependence of p′ and u′ in the upper (x > 0) and lower (x < 0) part of the tube. A memory

effect of 1
2
π will shift the phase of the heat transfer q from that of u′ (the quasi-steady approximation)

toward that of p′. It is the part of q which is in phase with p′ that produces the sound in a Rijke tube.

As we see from the diagram of figure 5.22 for ωτ = 1
2
π , the delayed heat flux q is in phase with p′ if

x < 0. Pulsations induced by a hot grid placed at x > 0 would involve a larger delay: ωτ = 3
2
π . As
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we will explain such a condition implies a very low flow velocity and hence much weaker oscillations.

In practice this oscillation mode at low velocities is not observed. The time delay τ is determined by

the time that a perturbation in δ′
T remains along the strip. When we blow very hard the residence time

τ of a perturbation δ′
T in the boundary layer on the strip will be very short because we expect from

(5.83b) that:

τ = O
( 3w

2u0

)
(5.88)

where w denotes the length of the heated strip in flow direction. When we do not blow hard enough

the boundary layers δ0 will be very thick. The hot gas remains around the warming element blocking

the heat transfer. Also when π 6 ωτ 6 2π we expect that the oscillations will be damped out. Hence,

an optimum of pulsations may be expected for ωτ = 1
2
π :

wω

u0

= π

3
. (5.89)

This behaviour is indeed verified by experiments. Of course in order to obtain a stable oscillation the

temperature Tw should reach a critical limit. For a horizontal tube at a fixed u0, imposed by blowing

through the pipe, this is less critical6 than in a vertical pipe where the temperature element also drives

the main flow u0. In experiments with a horizontal pipe it is quite easily observed that blowing too

hard reduces τ such, that pulsations disappear.

While we have seen that certain conditions are favourable for an oscillation we did not yet discuss

the non-linear effects leading to saturation. The most obvious effect is that when the acoustic particle

displacement becomes comparable to the width of the strip:

u′

ωw
= O(1), (5.90)

back flow will occur from the wake towards the strip. The strip is then surrounded by pre-heated gas

and this blocks the heat transfer. Note that at very large amplitudes (u′/ωw > 1) there is a wake

upstream of the strip during part of the oscillation period. We now understand, by combination of

(5.89) and (5.90), why in the experiment one finds typical amplitudes of the order of u′ = O(u0). The

proposed saturation model has first been used by Heckl [74]. It is interesting to note that Rayleigh

[189] describes this non-linear effect of saturation as a “driving” mechanism.

A comprehensive theory of the Rijke tube oscillation, including non-linear effects and the influence of

large temperature differences, has not yet been presented. We see that such a theory is not necessary

to predict the order of magnitude of the oscillation amplitude. On the contrary, it is sufficient to isolate

the essential limiting non-linearity.

5.6 Flow induced oscillations of a Helmholtz resonator

In view of the large amount of applications in which they occur, flow induced pulsations of a Helm-

holtz resonator or wall cavity have received considerable attention in the literature [11, 26, 46, 209,

6Since the design of a vertical Rijke tube driven by natural convection is not easy we provide here the dimensions of a

simple tube. For a glass pipe of 2L=30 cm length and an inner diameter of d =2.5 cm, one should use a metal gaze made of

wires of 0.2 mm to 0.5 mm diameter, the wires being separated by a distance in the order of 1 mm. This gaze can be cut in a

square of 2.5×2.5 cm2. The bended corners can be used to fix the gaze at its position (x = − 1
2

L). A small candle is a very

suitable heat source. The pipe will produce its sound after the candle is drawn back.
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53, 73, 83, 84, 89, 134, 160, 161, 211]. In principle the flow instability has already been described

qualitatively in section 5.1. We will now more specifically consider a grazing uniform flow.

We will now discuss models which can be used to predict the order of magnitude of the pulsations.

The configuration which we consider is shown in figure 5.23. Self-sustained oscillations with a fre-

quency ω close to the resonance frequency ω0 of the resonator occur when the phase condition for a

perturbation in the feedback loop (shear layer/resonator) is satisfied and the gain is sufficiently large.

When ω = ω0 we find a maximum of the pulsation amplitude and the phase condition is entirely

determined by the shear layer. In principle we should add to the convection time of the perturbation

along the shear layer a phase shift at the “receptivity” point upstream and another at the “excitation”

point downstream. These corrections are either due to “end corrections” or to the transition from a

pressure perturbation p′ in the resonator to a velocity or displacement perturbation of the shear layer.

We now ignore these effects for the sake of simplicity and because we do not have available any theory

that predicts these corrections.

In both configurations of figure 5.23 in first order approximation perturbations of the shear layer (at the

opening of the resonator) propagate with a velocity uc of the order of 1
2
u0. It appears from experiment

that when the travel time of a perturbation across the opening width w roughly matches the oscillation

period 2π/ω0 of the resonator (or a multiple of 2π/ω0) pulsations occur. Typically one finds a velocity

uc ≃ 0.4u0. Hence the phase condition for instability is [76]:

ω0w

0.4u0

= 2πn; n = 1, 2, 3, ... . (5.91)

More complex phase condition depending on the geometry and the Mach number has been reported by

[16, 209, 211]. The first hydrodynamic mode (n = 1) is usually the strongest because it corresponds

with the highest velocity at which pulsations occur. Furthermore when the hydrodynamic wave length

(w/n) becomes comparable to the gradient length δ in the grazing velocity profile (boundary layer

u0

u0

V

V

w

Figure 5.23 Helmholtz resonator in a wall with grazing flow.
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thickness at the wall) the flow becomes stable and the perturbations are damped. Typically for:

δω0

0.4u0

> 2 (5.92)

the flow is linearly stable. A currently used cure for pulsations is to place a device called “spoiler”

which increases δ just upstream of the cavity [25, 209]. Equation (5.92) can be used to choose a reas-

onable spoiler height. However, we found in some experiments that this is no guarantee for stability

[25]. Equation (5.92) imposes an upper bound to the hydrodynamic mode instability. In most exper-

iments mode numbers higher than n = 5 are not observed. A remarkable exception is the oscillation

found inside solid propellant rockets for which 6 ≤ n ≤ 12 [245].

It is often assumed that the perturbations along the shear layer grow according to a linear theory. It

appears that a linear theory is only valid for low pulsation amplitudes, in the range of u′/u0 ≤ 10−3.

In the experiments one observes in most cases for a grazing uniform flow a spectacular non-linear

behaviour of the shear layer [25]. The vorticity of the shear layer is concentrated into discrete vortices.

At moderate acoustic amplitude u′/u0 = O(10−1) one can assume that the acoustic field only triggers

the flow instability but does not modify drastically the amount of vorticity Ŵ shed at the upstream

edge of the slot. This leads to the model of Nelson [25, 76, 160, 161] in which one assumes a vortex

of strength Ŵ given by:

dŴ

dt
= dŴ

dx
· dx

dt
= u0 · 1

2
u0 (5.93)

travelling at a velocity uc = 0.4u0 across the slot (see figure 5.7). A new vortex is generated following

Nelson’s experimental observations at the moment that the acoustic velocity u′ is zero and is increasing

(directed into the resonator, p′ in the resonator is at a minimum).

Using Howe’s analogy as described in section 2.6 and 2.7 one can calculate the acoustic pulsation

amplitude. As the source strength ∇·(ω×v) is independent of u′ we find a finite amplitude by balancing

the friction, radiation and heat transfer losses with the power generated by the vortices. As friction

and radiation losses scale on u′2, we would expect from this theory to find pressure amplitudes scaling

with the dynamical pressure of the flow p′ = O( 1
2
ρu2

0). This occurs indeed when the edges of the slot

are sharp. Typically, the acoustic power W generated by vortices due to instability of the grazing flow

along an orifice of area (w × B) is given by

W = O(5 · 10−2) 1
2
ρ0u2

0wBu′

where u′ is the amplitude of the acoustic velocity fluctuations through the orifice.

−(ω×v)

v

u′

W

t

absorption

production

T

Figure 5.24 Absorption of acoustic energy by vortex shedding.
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The amplitude of the pulsations depends critically on the shape of the edge at which vortex shedding

occurs. This effect can be understood as follows. Upon formation of a new vortex the acoustic field u′

is directed towards the interior of the resonator. Using Howe’s formula:

W = −ρ0

∫∫∫

V

〈(ω×v)·u′〉 dV, (2.100)

we see that the vortex is initially absorbing energy from the acoustic field (figure 5.24) because −(ω×v)
is opposite to u′. At a sharp edge u′ is large because the potential (acoustic) flow is singular. When an

edge is rounded off u′ is not singular (figure 5.25) and the initial absorption will be modest.

u0

vortex

V

Figure 5.25 Rounded upstream edge.

The net sign of W over a period T = 2π/ω0 of oscillation depends of course also on the amount of

energy produced by the vortex in the second half of the acoustic period when the acoustic velocity

u′ is directed outwards from the resonator [25, 108]. Of course, when u0 is so large that the travel

time (w/0.4u0) of the vortex across the slot is shorter than half a period (w/0.4u0 <
1
2
T ), then only

absorption occurs. Self-sustained oscillations are impossible in this case. This effect can easily be

experienced by whistling with our lips. If we increase the blowing velocity the sound disappears.

The main amplitude limitation mechanism at high amplitudes, u′/u0 > 0.2, is the shedding of vorticity

by the acoustic flow. At the upstream edge this implies an increase of the shed vorticity Ŵ with u′

and a dependence of the initial damping on u′3. Howe [85] observes that at high amplitudes the

vortex sound absorption scales on u′3 whereas the sound production scales on u′u2
0. Hence, when

those effects balance each other, the amplitude u′ scales on u0. This behaviour is indeed observed

[25, 108]. A typical amplitude observed in Helmholtz resonators is u′/u0 = O(10−1). This amplitude

is also typical of a recorder flute or a whistle [76, 240].

In [108] it is observed that at very high amplitudes (u′/u0 = O(1)) in a resonator formed by side

branches along a pipe, non-linear wave propagation resulting into the generation of non-resonant

cavity modes was a major amplitude limiting mechanism. Another possible mechanism at high amp-

litudes is the transition of acoustical flow from laminar into turbulent (section 4.5.3).

The discussion given here provides some qualitative indications for various basic phenomena of cav-

ity oscillation. Models as the one of Nelson [160, 161] provide insight but are not able to predict

accurately the amplitude of the oscillations. In many engineering applications insight is sufficient for

taking remedial measures. However, when a prediction of the amplitude is required a more detailed

flow model is needed. Such models are not yet available.
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Exercises

a) Calculate the impedance seen by a piston placed at the end x = 0 of a tube closed at x = L by an

impedance Z(L). Neglect friction in the tube. For Z(L) = ∞ (closed wall) calculate the power generated

by the piston. Calculate the amplitude of the acoustic field for Z(L) 6= ∞.

b) When the impedance Z(L) at a pipe end is small, |Z(L)| ≪ ρ0c0, one can consider the pipe being

terminated at virtual position x = L + δ by a purely resistive impedance Z(L)′ = Re Z(L). δ is called

the end correction of the pipe. Derive a relationship between δ and Z(L).

x = 0 x = L
x

S u p u p

Sp

Figure 5.26 Two pistons along a pipe.

c) Consider two identical pistons of surface Sp placed at a distance L from each other along an infinitely

extended pipe (figure 5.26) of cross sectional surface S. Assume that the two pistons move harmonically

with the same velocity û p eiωt . Show that under specific conditions the acoustic field vanishes for x > L

and x < 0. How large is the amplitude of the acoustic field under these circumstances for 0 < x < L ?

S2

S1

u p

L

Figure 5.27 T-junction.

d) Consider a piston placed at the end of a closed side branch of cross sectional surface S1 along a main

pipe with a cross sectional surface S2 (figure 5.27). The side branch has a length L. The edges of the

junction at the main pipe are rounded off. Calculate the amplitude p̂ of the acoustic field at the piston

following linear theory for ωS1/2/c < 1 as a function of S1/S2 and L. Estimate the largest amplitudes

that may be reached before linear theory fails.

e) What is the impedance Z p of the piston for the configurations of figure 5.28a, b and c. Assume that

radiation losses at the open ends are negligible. Neglect friction in the pipe. Are these configurations at

certain critical frequencies equivalent to closed resonators?

f) Consider a clarinet as a cylindrical pipe segment of 2 cm diameter and 1 m long driven by a piston with

a velocity u p = û p eiωt . Assume that û p = 1 m/s which is a typical order of magnitude. Assume that

the pipe is driven at the first (lowest) resonance frequency. Calculate the pressure at the piston assuming

an ideal open end behaviour without radiation losses or flow separation. Calculate the amplitude of the

fluid particle displacement at the pipe end. Calculate the same quantities if a quasi-stationary model is

used at the pipe end to describe flow separation of the outgoing acoustic flow while friction is neglected.

Is a quasi-stationary model reasonable?
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a)

p′ ≃ 0

L

S2

L
u p

S1

©1

©2 ©3

b)

S S

S
S

L

2L

L
u p

©1

©2 ©3

©4

©5

c)

p′ ≃ 0 p′ ≃ 0

L L
S

S
u p©1 ©2

Figure 5.28 Coupled T-junctions.

g) A pipe segment with a different cross sectional area S2 than the cross section S1 of the rest of the pipe

can be used as a filter to prevent the propagation of waves generated by a piston. Two solutions can be

considered S2 > S1 and S1 < S2 (figure 5.29a and b). Assuming an ideal open end at x = L1 + L2 + L3,

provide a set of equations from which we can calculate the amplitude of the acoustic velocity û end at the

pipe end for a given velocity û p of the piston.

h) Introduction:

A possible 3-D model for a kettle drum consists of a cavity in free space, with acoustic perturbations

u p

p′ ≃ 0

L1 L2 L3

S1 S2 S1

u p
p′ ≃ 0S1 S2 S1

L1 L2 L3

Figure 5.29 Resonators in a pipe.
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p = p̂ eiωt in- and outside the cavity:

∇2 p̂ + k2 p̂ = 0, iωρ0û + ∇ p̂ = 0

for k = ω/c0. The cavity is hard-walled on all sides (û·n = 0) except one, which is closed by an

elastic membrane (tension T , mass density σ ). The membrane displacement η = η̂ eiωt is driven by (and

drives...) the pressure difference across the membrane:

T∇2η̂ + ω2σ η̂ = pupper − plower

The normal velocity û·n at both sides of the membrane is equal to ∂η/∂ t = iωη̂ eiωt , as the air follows

the membrane.

A basic musical question is: what is the spectrum of this system, i.e. for which (discrete) set {ωn} does

there exist a solution without forcing? Note that since the waves radiate away into free space any solution

will decrease and die out (called “radiation damping”), and (in general) the possibleωn’s will be complex,

with Im(ωn) > 0.

Problem:

A 1-D variant of the kettle drum problem is a semi-infinite pipe (0 6 x < ∞) of typical radius a, closed

at x = 0, and a piston-like element at x = L (modelling the membrane) driven by the pressure difference

across x = L, and kept in position by a spring.

p̂x x + k2 p̂ = 0 for x ∈ (0, L) ∪ (L,∞)

−8T a−2η̂ + ω2σ η̂ = p̂(L+)− p̂(L−) at x = L

p̂x = 0 at x = 0

p̂x = ω2ρ0η̂ at x = L

outgoing waves for x → ∞.

Determine the equation for ω, solve this for some simple cases, and try to indicate the general solution

graphically in the complex ω-plane for dimensionless groups of parameters. Are there solutions with

Im(ω) = 0? How are these to be interpreted physically?

i) Consider the Helmholtz resonator as an acoustic mass-spring system. What are the acoustic mass m and

the spring constant K of this mass-spring system.

j) Assuming that p′
ex = 0, how would the Helmholtz resonator react to a periodic volume injection Q =

Q̂ eiωt into the bottle (e.g. a piston moving in the bottom wall).

L

u p

Sn

V

S

Figure 5.30 Helmholtz resonator driven by a piston.

k) Consider a Helmholtz resonator in a semi-infinite pipe driven by a piston at x = 0 (figure 5.30). Cal-

culate the transmitted acoustic field following linear theory. What is the condition for which there is no

transmission.

l) Consider the volume V between two orifices of equal aperture surface Sd ≪ Sp in a pipe of surface Sp

(figure 5.31). Calculate the transmission coefficient and reflection coefficient following linear theory for

an acoustic wave p+ eiωt−ikx incident from the left.
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Sp V Sd

Figure 5.31 Two orifices

S

V

ℓ

air

water

Sp

Figure 5.32 Exercise m

m) Consider a volume V filled with air connected by a short pipe of length ℓ to a pipe filled with water

(figure 5.32). Calculate the reflection and transmission coefficient following linear theory for a wave

p+ eiωt−ikx incident from the left.

n) Assuming ρ0ωℓû ≫ 1
2
ρ0û2, estimate the maximum acoustic velocity û which can be reached for given

volume injection Q̂ eiωt in a Helmholtz resonator if friction and heat transfer are neglected. Compare

this with the maximum pressure which can be reached in a 1
4
λ pipe resonator (with one open end).

o) Calculate the value of p̂in/ p̂ex at resonance for a Helmholtz resonator in the presence of mean flow of

velocity u0 through the neck.

p) Using the integral formulation (3.12) on [0, L] using the Green’s function ga corresponding to the geo-

metry of figure 5.18a (with (∂ga/∂y)y=0 = 0 and (ga)y=L corresponding to the impedance of the pipe

seen from the position y = 0) we find:

p′ = −ρ0c2
0

∫ t

−∞

[(∂ga

∂τ

)
u′(y, τ )

]
y=0

dτ.

Derive this equation starting from (3.12). This equation is equivalent to (5.73).

q) Calculate the expected acoustic optimal amplitude in a vertical Rijke tube of 1 m length and 5 cm

diameter in which a gauze with a strip of width w = 1 mm has been placed at x = −0.25 m. Do you

expect that at this amplitude vortex shedding at the pipe end will be a significant acoustic energy loss

mechanism?

r) Consider a Helmholtz resonator with a volume V and a slot aperture w × B placed in a wall with a

grazing flow (figure 5.23). Given that the maximum power is given by

W = 0.05 1
2
ρ0u2

0ûwB

estimate the amplitude of the acoustic pressure p̂ in the resonator for air if:

V = 3 m3, w = 0.3 m, B = 0.5 m.

(A car with open roof!). Assume that the effective neck length is ℓ ≃ w.

s) Give an order of magnitude of the acoustical pressure fluctuations in a clarinet.



6 Spherical waves

6.1 Introduction

In the previous chapter we have considered the low frequency approximation of the acoustics of

pipes and resonators. Radiation of sound from such systems was assumed to be a small effect for

the internal acoustic field, and therefore could be neglected in our analysis. However, if sound would

not escape we would not hear it. Hence, for the calculation of environmental noise the radiation is

crucial. Furthermore, as sound often is transferred through walls, the vibration of elastic structures is

an essential part of the radiation path. To keep things manageable we will assume that the vibrating

objects are small compared to the wave length (compact bodies) and that we radiate sound into an

unbounded homogeneous quiescent fluid (free space).

Starting from an exact solution of the acoustic field induced by the pulsation and translation of a sphere

(section 6.2) we will derive an expression for the free field Green’s function G0 (6.36,6.37). Taylor’s

series expansion of G0 will be used to introduce the concepts of monopole, dipole, quadrupole, etc,

and multipole expansion (section 6.3). The method of images will appear to be a very powerful tool

to get insight into the effect of boundaries on radiation (section 6.4). After a summary of the classical

application of Lighthill’s analogy to free jets (section 6.5) we will consider the radiation of a compact

body by using Curle’s formalism (section 6.6). This will be used to get insight into the sound generated

by a ventilator. Finally the radiation from an open pipe termination will be discussed (section 6.7).

Note. Two-dimensional acoustic waves have a complex structure as may be seen from the Green’s

functions given in Appendix E (see the discussion by Dowling et al. [52]).

6.2 Pulsating and translating sphere

The wave equation in 3-D allows quite complex solutions. However, for the particular case of a spher-

ically symmetric acoustic field the wave equation reduces to:

1

c2
0

∂2 p′

∂t2
− 1

r2

∂

∂r

(
r2 ∂p′

∂r

)
= 0 (6.1)

where r is the distance between the observation point and the origin. The key for solving (6.1) is that

we can formulate a 1-D wave equation for (rp′):

1

c2
0

∂2(rp′)

∂t2
− ∂2(rp′)

∂r2
= 0. (6.2)

This result can easily be understood because acoustic energy scales with p′2 (equation 2.80a). Hence,

as the surface of a spherical wave increases with r2 the amplitude p′(r) should decrease as r−1 to keep

energy constant as the wave propagates.
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Compared to 1-D waves the relationship between pressure p′ and acoustic velocity v′ now shows

a drastically new behaviour which depends on the ratio of r and the acoustic wave length. In three

dimensions we have a region with kr ≪ 1 called “near field” in which we find a behaviour of v′ which

is close to that of an incompressible flow, while for kr ≫ 1 we find a “far field” region in which the

waves behave locally as plane waves. The radius of curvature of the wave front is large compared to

the wave length.

These features may be derived from the radial component of the (linearized) momentum conservation

law:

ρ0

∂v′

∂t
= −∂p′

∂r
(6.3a)

and the linearized mass conservation law:

∂(ρ ′r2)

∂t
= −ρ0

∂(v′r2)

∂r
. (6.3b)

The mass in a volume shell 4πr2dr changes as a result of the difference between 4πr2v′ and 4π(r +
dr)2v′(r + dr) in flux. We eliminate ρ ′ by using the constitutive equation p′ = c2

0ρ
′, and eliminate v′

by subtracting the time derivative of r2 times the momentum equation (6.3a) from the spatial derivative

of the mass equation (6.3b). This yields the wave equation (6.1).

The general, formal solution of (6.2) is:

rp′ = F
(

t − r

c0

)
+ G

(
t + r

c0

)
, (6.4)

combining an outgoing wave F and an incoming wave G. Far away there is no incoming wave, so we

define the “free field” as the region for which G = 0. This result of a vanishing incoming wave in free

space may also be formulated as a boundary condition at r → ∞ (2.23a,2.23b,2.25).

As already stated, the acoustic velocity v′ has a rather complex behaviour, in contrast with the 1-D

situation. This behaviour is found by substitution of (6.4) into the momentum conservation law (6.3a):

ρ0

∂v′

∂t
= −∂p′

∂r
= 1

r2
F

(
t − r

c0

)
+ 1

c0r
F ′

(
t − r

c0

)
. (6.5)

We now observe that the first term of (6.5) corresponds, for r/c0 much smaller than the typical inherent

time scale, to an incompressible flow behaviour (r2v′ = constant) while the second term corresponds

to wave-like phenomena. Only the second term does contribute to the acoustic energy flux 〈I 〉 =
〈p′v′〉. This may be verified by substitution of a harmonic solution into (6.5):

p′ = p̂ eiωt = A

4πr
eiωt−ikr (6.6)

we find

v̂ = p̂

iωρ0r
+ p̂

ρ0c0

= p̂

ρ0c0

(
− i

kr
+ 1

)
. (6.7)

The first term in v̂ is 1
2
π out of phase with p̂ and therefore does not contribute to 〈I 〉 = 〈p′v′〉. Hence:

〈p′v′〉 = 1
4
(v̂ p̂∗ + v̂∗ p̂) = p̂ p̂∗

2ρ0c0

. (6.8)
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A very systematic discussion of this fundamental solution is given by Lighthill [123].

Using (6.5) we can now determine the acoustic field generated by a pulsating sphere of radius a(t). If

(∂a/∂t)/c0 ≪ 1, we can use linear acoustics, while the movement of the sphere boundary yields the

equation derived from (6.5):

ρ0

∂2a

∂t2
= 1

a2
F

(
t − a

c0

)
+ 1

c0a
F ′

(
t − a

c0

)
. (6.9)

For a compact sphere the first term is dominating (a(∂2a/∂t2)/c2
0 ≪ 1). We find exactly the result

which we could anticipate from (2.61), the second derivative to time of the volume of the sphere is

the source of sound.

A steady expansion of the sphere (∂a/∂t = constant) does not (in this approximation) generate sound.

The second term of (6.9) is dominating for large sphere radii (a(∂2a/∂t2)/c2
0 ≫ 1). In such a case the

action of the wall movement is that of a piston which generates plane waves. For harmonic oscillations

of the sphere (a = a0+ â eiωt), the amplitude A of the radiated field is found from (6.6) by substitution

of v̂ = iωâ in (6.7) at r = a0.

p̂(a0) = A

4πa0

e−ika0 = −ω
2ρ0a0â

1 + ika0

.

Hence

p̂(r) = −ρ0c2
0 kâ

k2a2
0

1 + ika0

e−ik(r−a0)

kr
. (6.10)

We can also determine the acoustic impedance Z

Z(ω) = p̂(a0)

v̂(a0)
= p̂(a0)

iωâ
(6.11)

Using (6.7) we find:

Z

ρ0c0

= ika0

1 + ika0

= ika0 + (ka0)
2

1 + (ka0)2
. (6.12)

We see that the real part of the radiation impedance of a compact sphere (ka0 ≪ 1) is very small:

Re
( Z

ρ0c0

)
≃ (ka0)

2 (6.13)

Hence (see (3.17)) a compact vibrating object in free space will be a very ineffective source of sound.

This effect becomes even more dramatic when we consider the radiation of a compact vibrating ob-

ject of constant volume. The most simple example of this behaviour is a translating sphere of constant

radius a0. This is what we call a dipole radiation source, in contrast to the monopole source corres-

ponding to a compact pulsating sphere.

The solution of the problem is easily obtained since we can generate from the spherically symmetric

solution (6.4) non-spherically symmetric solutions by taking a spatial derivative (see equation 2.24b).

If ϕ is a (spherically symmetric) solution of the wave equation:

1

c2
0

∂2ϕ

∂t2
− ∇2ϕ = 0 (6.14)
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then any derivative of ϕ, such as (∂ϕ/∂xi) or (∂ϕ/∂t), is also a solution:

1

c2
0

∂2

∂t2

( ∂ϕ
∂xi

)
− ∇2

( ∂ϕ
∂xi

)
= 0, (6.15)

in particular, any derivative of Eq. (6.6) is a solution. So if we try to find the field of a translating

sphere with velocity v0 (in x-direction), where at its surface the radial flow velocity is given by:

v′(a0, ϑ) = v0 · r
a0

∣∣∣
|r |=a0

= v0 cos ϑ. (6.16)

we can use the derivative in the x-direction. For a harmonic oscillation v0 = v̂0 eiωt with (v̂0/ωa0) ≪ 1

the pressure field p′ is given by:

p̂ = A
∂

∂x

(e−ikr

r

)
= A cos ϑ

∂

∂r

(e−ikr

r

)
(6.17)

because ∂ r
∂x

= cos ϑ . This pressure is related to the acoustic velocity v′ by the momentum conservation

law (6.3a):

iωρ0v̂ = −A cos ϑ
∂2

∂r2

(e−ikr

r

)
. (6.18)

Using the boundary condition (6.16) for r = a0 we can now calculate the amplitude A for given v̂0:

iωρ0v̂0 = −A
2 + 2ika0 − (ka0)

2

a3
0

e−ika0 (6.19)

so that the pressure field (6.17) can be written as:

p̂ = −iωρ0v̂0a3
0 cos ϑ

2 + 2ika0 − (ka0)2

∂

∂r

(e−ik(r−a0)

r

)
. (6.20)

In the limit of (ka0) ≪ 1 we see that:

p̂ ≃ − 1
2
(ka0)

2ρ0c0v̂0

a0 cos ϑ

r

(
1 − i

kr

)
e−ikr . (6.21)

Again we observe a near field behaviour with a pressure decreasing as r−2 and for which p̂ is 1
2
π

out of phase with v̂0. This pressure field simply corresponds to the inertia of the incompressible flow

induced by the movement of the fluid from the front towards the back of the moving sphere. From

(6.21) for r = a0 with (ka0) ≪ 1 we see that:

p̂(a0) = 1
4
ρ0c0v̂0 cosϑ

(
2ika0 + i(ka0)

3 + (ka0)
4 + · · ·

)
. (6.22)

Hence, as the drag on the sphere, which is in phase with v̂0, scales as a2
0 Re[ p̂(a0)], we see that the

acoustic power generated by the sphere scales as ρ0c0v̂
2
0a2

0(ka0)
4. This is a factor (ka0)

2 weaker than

the already weak radiation power of a compact pulsating sphere. So we now understand the need of

a body in string instruments or of a sound board in a piano. While the string is a compact oscillating

cylinder (row of oscillating spheres), which does not produce any significant sound directly, it induces

vibrations of a plate which has dimensions comparable with the acoustic wave length and hence is
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radiating with an acoustic impedance ρ0c0 which is a factor (ka0)
4 more efficient than direct radiation

by the string.

Note. In order to provide a stable sound one should avoid in string instruments elastic resonances of

the body which are close to that of the string. If this is not the case the two oscillators start a complex

interaction, which is called for a violin a “wolf tone”, because it has a chaotic behaviour [132].

Having discussed aspects of bubble acoustics in a pipe in section 4.4.5, we will now consider some

specific free field effects. Consider the oscillation of a compact air bubble in water as a response to

an incident plane wave pin = p̂in eiωt−ikx in free space (deep under water). We can locally assume

the pressure pb in the bubble to be uniform and we assume a spherical oscillation of the bubble of

equilibrium radius a0:

a = a0 + â eiωt . (6.23)

The pressure in the bubble is given by:

p′
b = p′

in + p′
r (a0) (6.24)

where p′
r (a0) is the acoustic pressure due to the spherical waves generated by the bubble oscillation.

We have neglected surface tension. Furthermore, we assume an ideal gas behaviour in the bubble:

p′
b

p0

= −3γ
a′

a0

(6.25)

where γ = 1 for isothermal compression and γ = CP/CV for isentropic compression. p̂r (a) is related

to â by the impedance condition:

p̂r (a) = iωâZ (6.26)

and Z(ω) is given by equation (6.12). Hence combining (6.24) with (6.25) and (6.26) we find:

− 3γ p0

a0

â = p̂in + iωâZ (6.27)

or:

p̂r (a0) = iωâZ = − p̂in

1 − i
3γ p0

ωa0 Z

(6.28)

and

p̂r = p̂r (a0)
a0

r
e−ik(r−a0) . (6.29)

Using (6.12) we can write (6.28) as:

p̂r (a0) = − p̂in

1 −
(ω0

ω

)2(
1 + ika0

) (6.30)

where ω0 is the Minnaert frequency defined by:

ω2
0 = 3γ p0

ρ0a2
0

. (6.31)
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It is interesting to note that at resonance (ω = ω0) under typical conditions a bubble is compact

because:

(k0a0)
2 =

(ω0a0

c0

)2

= 3γ p0

ρ0c2
0

(6.32)

is small as long as p0 ≪ ρ0c2
0.

For water ρ0c2
0 = 2 × 104 bar, hence up to p0 = 100 bar one can still assume bubble oscillations

at resonance to be compact. Equation (6.30) has many interesting further applications [52, 115]. For

example, sonar detection of fishes by using a sweeping incident sound frequency yields information

about the size of fishes because the resonance frequency ω0 of the swim bladder yields information

on the size a0 of the fish. Furthermore, at resonance sound is scattered quite efficiently:

p̂r = −i
p̂in

k0r
e−ik(r−a0) . (6.33)

Hence the fish scatters sound with an effective cross section of the order of the acoustic wave length

at ω0 (an effective increase of the cross section by a factor (k0a0)
−1). As we know a0 from ω0 the

intensity of the scattered field yields information on the amount of fish. Another fascinating effect of

bubble resonance is the very specific sound of rain impact on water [184].

6.3 Multipole expansion and far field approximation

The free field Green’s function G0 defined by equation (3.1)

∂2G0

∂t2
− c2

0

∑ ∂2G0

∂x2
i

= δ(x − y)δ(t − τ) (3.1)

and the Sommerfeld radiation condition (2.25), may be found in Appendix E, but can be derived as

follows. We start with considering the Fourier transform Ĝ0 of G0, with

G0 =
∫ ∞

−∞
Ĝ0 eiωt dω

and satisfying

∑ ∂2Ĝ0

∂x2
i

+ k2Ĝ0 = − 1

2πc2
0

δ(x − y) e−iωτ , (6.34)

where k = ω/c0. From symmetry arguments, Ĝ0 can only be a function of distance r = |x − y|, so

the solution of (6.34) has the form (see equation (6.6))

Ĝ0 = A

4πr
e−ikr (6.35)

where A is to be determined. Integration of (6.34) over a small sphere Bε around y, given by, say,

r = ε, yields by application of Gauss’ theorem

∫∫∫

Bε

∑ ∂2Ĝ0

∂x2
i

+ k2Ĝ0 dx =
∫∫∫

Bε

− 1

2πc2
0

δ(x − y) e−iωτ dx =

∫∫

∂Bε

∑ ∂Ĝ0

∂xi

ni dσ +
∫∫∫

Bε

k2Ĝ0 dx = 4πε2 ∂Ĝ0

∂r
+ O(ε2) = −A + O(ε) = − 1

2πc2
0

e−iωτ
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where ni denotes the outward normal of Bε, and we used the fact that ε is small. If we let ε → 0 we

find that A = (2πc2
0)

−1 e−iωτ . So we have:

Ĝ0 = e−iωτ−ikr

8π2c2
0r

= e−iω(τ+r/c0)

8π2c2
0r

(6.36)

(note the factor −1/2π difference with the Green’s function of a regular Helmholtz equation) and,

using equation (C.33),

G0 = δ(t − τ − r/c0)

4πrc2
0

. (6.37)

In order to derive the general multipole expansion we will first consider the field at a single frequency.

By using the free-field Green’s function (Appendix E) we find the acoustic field for a given time-

harmonic source distribution q̂(x) eiωt in a finite volume V to be given by

ρ̂ ′ = p̂′

c2
0

=
∫∫∫

V

q̂(y)Ĝ0(x|y) d y =
∫∫∫

V

q̂(y)
e−ikr

4πc2
0r

d y. (6.38)

Suppose the origin is chosen inside V . We are interested in the far field, i.e. |x| is large, and a compact

source, i.e. kL is small where L is the typical diameter of V . This double limit can be taken in

several ways. As we are interested in the radiation properties of the source, which corresponds with

k|x| > O(1), we will keep kx fixed. In that case the limit of small k is the same as small y, and we

can expand in a Taylor series around y = 0

r =
(
|x|2 − 2(x · y)+ |y|2

)1/2 = |x|
(

1 − x· y
|x|2 + |y|2

2|x|2 − (x· y)2

2|x|4 + . . .
)

= |x|
(

1 − |y|
|x| cos θ + 1

2

|y|2
|x|2 sin2 θ + . . .

)

(where θ is the angle between x and y) and

e−ikr

r
= e−ik|x|

|x|
(

1 +
(
1 + ik|x|

) 1

|x|2
3∑

j=1

x j y j + . . .
)

=
∞∑

l,m,n=0

yl
1 ym

2 yn
3

l! m! n!

[
∂ l+m+n

∂yl
1∂ym

2 ∂yn
3

e−ikr

r

]

y1=y2=y3=0

. (6.39)

As r is a symmetric function in x and y, this is equivalent to

e−ikr

r
=

∞∑

l,m,n=0

(−1)l+m+n

l! m! n! yl
1ym

2 yn
3

∂ l+m+n

∂x l
1∂xm

2 ∂xn
3

e−ik|x|

|x| . (6.40)

The acoustic field is then given by

ρ̂ ′ = 1

4πc2
0

∞∑

l,m,n=0

(−1)l+m+n

l! m! n!

∫∫∫

V

yl
1ym

2 yn
3 q̂(y) d y

∂ l+m+n

∂x l
1∂xm

2 ∂xn
3

e−ik|x|

|x| . (6.41)

As each term in the expansion is by itself a solution of the reduced wave equation, this series yields

a representation in which the source is replaced by a sum of elementary sources (monopole, dipoles,
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quadrupoles, in other words, multipoles) placed at the origin ( y = 0). Expression (6.41) is the mul-

tipole expansion of a field from a finite source in Fourier domain. From this result we can obtain the

corresponding expansion in time domain as follows.

With Green’s function (6.37) we have the acoustic field from a source q(x, t)

ρ ′ =
∫ ∞

−∞

∫∫∫

V

q(y, τ )
δ(t − τ − r/c0)

4πrc2
0

d ydτ =
∫∫∫

V

q(y, t − r/c0)

4πrc2
0

d y (6.42)

If the dominating frequencies in the spectrum of q(x, t) are low, such that ωL/c0 is small, we obtain

by Fourier synthesis of (6.41) the multipole expansion in time domain (see Goldstein [70])

ρ ′ = 1

4πc2
0

∞∑

l,m,n=0

(−1)l+m+n

l! m! n!
∂ l+m+n

∂x l
1∂xm

2 ∂xn
3




1

|x|

∫∫∫

V

yl
1ym

2 yn
3 q(y, t − |x|/c0) d y




=
∞∑

l,m,n=0

∂ l+m+n

∂x l
1∂xm

2 ∂xn
3

[
(−1)l+m+n

4π |x|c2
0

µlmn(t − |x|/c0)

]
(6.43)

where µlmn(t) is defined by:

µlmn(t) =
∫∫∫

V

yl
1ym

2 yn
3

l! m! n! q(y, t) d y. (6.44)

The (lmn)-th term of the expansion (6.43) is called a multipole of order 2l+m+n . Since each term

is a function of |x| only, the partial derivatives to xi can be rewritten into expressions containing

derivatives to |x|. In general, these expressions are rather complicated, so we will not try to give

the general formulas here. It is, however, instructive to consider the lowest orders in more detail as

follows.

The first term corresponds to the monopole:

ρ ′
0 = µ0(t − |x|/c0)

4πc2
0|x|

(6.45)

where we wrote for brevity µ0 = µ000. We have concentrated the source at the origin and

µ0(t) =
∫∫∫

V

q(y, t) d y. (6.46)

The next term is the dipole term:

ρ ′
1 = −

3∑

i=1

xi

|x|
∂

∂|x|
(µ1,i(t − |x|/c0)

4πc2
0|x|

)
(6.47)

where we wrote for brevity: µ1,1 = µ100, µ1,2 = µ010 and µ1,3 = µ001. If q is a point source this

dipole term is easily visualized as shown in figure 6.1.

The dipole of strength µ1,i , which we should place at the origin ( y = 0):

µ1,i(t) =
∫∫∫

V

yiq(y, t) d y, (6.48)



134 6 Spherical waves

.....

Figure 6.1 First step in the multipole expansion of a point source.

is obtained by bringing the (point) source q towards the origin while increasing its strength and that

of the opposite (point) source −q at the origin in such a way that we keep |y|q constant.

A dipole field is not isotropic because in a direction normal to the vector y the two sources forming

the dipole just compensate each other, while in the other directions due to a difference in emission

time there is a net acoustic field. This effect of the difference in retarded time (figure 6.2) between the

ϑ

y

x

x − y

y·x
|x|

Figure 6.2 Retarded or emission time difference is ( y·x/|x|)/c0 = (|y| cosϑ)/c0.

sources in the dipole simplifies in the far field as follows. Writing (6.47) as:

ρ ′
1 = −

3∑

i=1

xi

|x|

∫∫∫

V

yi

4πc2
0

{
− 1

c0|x|
∂

∂t
q(y, t − |x|/c0)− 1

|x|2 q(y, t − |x|/c0)

}
d y (6.49)

we see that for large distances (k|x| ≫ 1) the acoustic field due to the dipole contribution is given by:

ρ ′
1 ≃

3∑

i=1

xi

4πc3
0|x|2

∂

∂t

∫∫∫

V

yiq(y, t − |x|/c0) d y =
3∑

i=1

xi

4πc3
0|x|2

[ d

dte
µ1,i(te)

]
te=t−|x|/c0

(6.50)

where µ1,i(t) is the dipole strength. If the source has a particular form, for example it represents a

force density fi like in (2.65):

q(y, τ ) = −
3∑

i=1

∂ fi

∂yi

, (6.51)

we observe that the surface integral of the monopole term vanishes because we assumed a finite

source region, outside which f = 0. We see that the force field fi is equivalent to an acoustic dipole
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of strength:

µ1,i =
∫∫∫

V

fi d y (6.52)

which corresponds simply to the total force F on V . In a similar way it is clear that the Lighthill stress

tensor Ti j induces a quadrupole field because from (2.65) we have:

q =
3∑

i, j=1

∂2Ti j

∂yi∂y j

.

By partial integration it follows that the strength of the quadrupole is:

µ2,i j =
∫∫∫

V

Ti j dx, (6.53)

where we wrote for brevity µ2,11 = µ200, µ2,12 = µ110, µ2,13 = µ101, etc. . In the far field ap-

proximation, where the retarded (or emission) time effect can be estimated by replacing (∂/∂|x|) by

−c−1
0 (∂/∂t), we find for a quadrupole field

ρ ′ ≃
3∑

i, j=1

xi x j

4πc2
0|x|3

1

c2
0

[ d2

dt2
e

µ2,i j (te)
]

te=t−|x|/c0

. (6.54)

6.4 Method of images and influence of walls on radiation

Using G0 we can build the Green’s function in presence of walls by using the method of images as

discussed in section 4.6. The method of images is simple for a plane rigid wall and for a free surface.

In the first case the boundary condition v′ ·n = 0 is obtained by placing an image of equal strength

q at the image point of the source position (figure 6.3). For a free surface, defined by the condition

p′ = 0 (air/water interface seen from the water side), we place an opposite source −q at the image

point.

For a rigid wall at x1 = 0 we simply have the Green’s function:

G(x, t|y, τ ) = δ(t − τ − r/c0)

4πc2
0r

+ δ(t − τ − r∗/c0)

4πc2
0r∗ (6.55)

where

r =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2,

r∗ =
√
(x1 + y1)2 + (x2 − y2)2 + (x3 − y3)2.

We easily see from figure 6.3 that a source placed close to a rigid wall will radiate as a source of

double strength (|y1|k ≪ 1) while a source close to a free surface will radiate as a dipole.

When more than a wall is present the method of images can be used by successive reflections against

the walls. This is illustrated in figure 6.4. When a harmonic source is placed half way between two

rigid walls separated by a distance h (at y = 1
2
h) the radiated field is equivalent to that of an infinite
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Figure 6.3 Images of sources in plane surfaces
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Figure 6.4 Application of the method of images.

array of sources placed at a distance h from each other (figure 6.4b). We immediately see from this that

there are directions ϑ in which the sources in the array interfere positively. The interference condition

is simply:

h sinϑ = nλ; n = 0, 1, 2, ... (6.56)

where λ is the acoustic wave length. For this symmetrically placed source only symmetric modes can

occur. When the source is placed at one of the walls (y = 0 or h) we find the interference condition
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given by

h sinϑ = 1
2
nλ; n = 0, 1, 2, ... (6.57)

since the source and its images form an array of sources placed at a distance 2h from each other.

The condition n = 0 corresponds to plane waves in a tube. The conditions n > 0 correspond to

higher order mode propagation in the “duct” formed by the two walls. This can also be seen for a duct

of square cross section for which the image source array becomes two-dimensional. We clearly see

from this construction that higher order modes will not propagate at low frequencies because when

(h < 1
2
λ), there are no other solutions than ϑ = 0 to equation (6.57). This justifies the plane wave

approximation used in chapter 4 (see further chapter 7). We see also that at low frequencies (for plane

waves) the radial position of a source does not affect the radiation efficiency. For a higher mode, on the

other hand, the sound field is not uniform in the duct cross section and the source radiation impedance

is position dependent. The first non-planar mode has a pressure node on the duct axis and cannot be

excited by a volume source placed on the axis (
∮

p′ Q dt = 0). This explains the difference between

condition (6.56) and (6.57) for the excitation of a higher mode. A more comprehensive treatment of

pipe modes is given in chapter 7.

R r∗

r

Figure 6.5 Image of a line source in a compact cylinder.

The method of images can also be used for a line source close to a compact cylinder of radius R or

a point source near a compact sphere of radius a [139]. For a line source near a cylinder we should

place an identical line source at the inverse point r∗ defined by:

r∗ = r (R/|r|)2 (6.58)

and an opposite line source (i.e. a sink) at r = 0 on the cylinder axis (figure 6.5). For a sphere we

should place a source q∗ at r∗ defined by:

q∗ = q a/|r| (6.59)

and

r∗ = r (a/|r|)2 (6.60)

while in order to keep the mass balance we place a line of uniformly spaced sinks of total strength q∗

stretching from r∗ to the center of the sphere (r = 0) [139].

6.5 Lighthill’s theory of jet noise

Consider a free turbulent jet formed at the exit of a circular pipe of diameter D. The mean flow velocity

in the pipe is u0. We assume that u0 ≪ c0 and that the entropy is uniform (air jet in air with uniform
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temperature). The key idea of Lighthill was that the sound produced by the turbulence was originated

from a volume of order D3 and that the influence of the pipe walls on the sound radiation could be

neglected.

In such a case combining (2.65) with (3.13) and using the free space Green’s function G0 given by

(6.37) we find:

ρ ′(x, t) =
t∫

−∞

∫∫∫

V

∂2Ti j

∂yi∂y j

G0(x, t|y, τ ) d ydτ. (6.61)

Partial integration (twice) yields:

ρ ′(x, t) =
t∫

−∞

∫∫∫

V

∂2G0

∂yi∂y j

Ti j (y, τ ) d ydτ. (6.62)

Because G0 is only a function of r = |x − y| we have:

∂G0

∂yi

= ∂G0

∂r

∂r

∂yi

= −
( xi − yi

r

)∂G0

∂r
= −∂G0

∂xi

. (6.63)

Approaching the source towards the observation point has the same effect as approaching the obser-

vation point towards the source. Hence we can write (6.62) as:

ρ ′(x, t) = ∂2

∂xi∂x j

t∫

−∞

∫∫∫

V

G0(x, t|y, τ )Ti j (y, τ ) d ydτ. (6.64)

The integration variable yi does not interfere with xi . Using now (6.37) we can carry out the time

integration:

ρ ′(x, t) = ∂2

∂xi∂x j

∫∫∫

V

Ti j (y, t − r/c0)

4πc2
0r

d y. (6.65)

In the far field the only length scale is the wave length, hence we have replaced the problem of the

estimate of a space derivative (∂/∂yi) at the source by the problem of the estimate of the characteristic

frequency of the produced sound. In the far field approximation we have:

ρ ′(x, t) ≃ xi x j

4πc2
0|x|2

∂2

c2
0∂t2

∫∫∫

V

Ti j (y, t − |x|/c0)

|x| d y. (6.66)

For high Reynolds number we can neglect the effect of viscosity (if it were not small turbulence would

not occur!). If we assume a homentropic compact flow we have (2.68):

Ti j ≃ ρ0viv j . (6.67)

The first estimates of Lighthill for a circular1 free jet are:

1See Bjørnø [15] for planar jets.
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– the characteristic time scale for large eddy’s in the flow is (D/u0).

– the Reynolds stress scales as ρu2
0.

– the relevant volume V is of order D3.

Hence we should replace (∂/∂t) by u0/D in (6.66) and we find:

ρ ′(x, t) ∼ 1

4πc4
0

(u0

D

)2ρ0u2
0 D3

|x| (6.68)

or in terms of intensity ρ ′2 and Mach number M0 = u0/c0:

ρ ′2 ∼
( ρ0 D

4π |x|
)2

M8
0 . (6.69)

This is the celebrated 8-th power law of Lighthill which ".. represents a triumph of theory over ex-

periment; before the publication of U 8, most reports of measured jet noise data gave a U 4 variation,

which was then quickly recognized, post U 8, as associated with noise sources within the engine itself,

rather than with the jet exhaust turbulent mixing downstream of the engine. In fact, variation of in-

tensity with U 8 is now generally accepted as defining jet mixing noise .." (Crighton, l.c.); see figure

6.6. Equation (6.69) tells us that turbulence in free space is a very ineffective source of sound. When

a more detailed description of the flow is used to estimate Ti j one can also find the directivity pattern

of the radiation field [70, 16, 191]. This directivity pattern results from Doppler effects and refraction

of the sound waves by the shear layer surrounding the jet.
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Figure 6.6 Sound power generated by a jet.

As the Mach number approaches unity the character of the sound production changes drastically

because the flow is not compact any more (D/λ ∼ M0) and because at higher Mach numbers shock

waves appear if the jet is not properly expanded. These shocks generate noise by interaction with

turbulence (random vorticity) and vortices (coherent structures) [66].

Moreover, it is obvious that the generated power cannot grow indefinitely with a power M8. There

is a natural maximum corresponding to the kinetic energy flux in the jet 1
2
ρu3

0 · π
4

D2. This natural

upper bound prevails above M > 1 and the sound intensity scales above M > 1 as M3
0 . The typical

fraction of flow power transferred to the acoustic field at high Mach number by a properly expanded
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supersonic jet is 10−4 (M > 1). Following Goldstein [70] the acoustic power W generated by a

subsonic homentropic jet is given by

W
1
8
ρ0u3

0πD2
= 8 × 10−5 M5

0 . (6.70)

Hence at Mach M0 = 0.1 we can estimate that only a fraction 10−9 of the hydrodynamic power is

transferred to the acoustic field. This is the key of the problem of calculating the acoustic field from

a numerical calculation of the flow pattern at low Mach numbers. In order to achieve this we have

to calculate the flow field within an accuracy which is far above the typical score (5%) of turbulence

modelling nowadays. However, the simple scaling law of Lighthill already tells us that in order to

reduce turbulence noise we should reduce the Mach number. A very useful result as we will see from

exercise k) below.

Lighthill’s analogy in the form of equation (6.66) is often used to obtain acoustical information from

numerical calculations of turbulent flow. Such calculations can be based on an incompressible model

which by itself does not include any acoustic component.

When the jet has a different entropy than the environment (hot jet or different fluid) the sound pro-

duction at low Mach numbers is dominated by either Morfey’s dipole source term (∂/∂yi)((c
2 −

c2
0)/c

2
0)(∂p′/∂yi) or by a volume source term due to diffusion and heat transfer (entropy fluctuations).

When a hot gas with constant caloric properties is mixed with the cold environment the monopole

sound source is negligible compared to the dipole due to convective effects ([144]). One finds then a

sound power which at low Mach numbers scales at M6
0 . Upon increasing the Mach number the tur-

bulent Reynolds stress can become dominant and a transition to the cold jet behaviour (M8
0 ) can be

observed in some cases.

In hot jets with combustion, vapour condensation or strongly temperature dependent caloric gas prop-

erties the monopole source dominates ([42]), and a typical M4
0 scaling law is found for ρ ′2.

The influence of the viscosity on the sound generation by a free jet has been studied by Morfey [145],

Obermeier [165] and Iafrati [90].

6.6 Sound radiation by compact bodies in free space

6.6.1 Introduction

In principle, when a compact body is present in a flow we have two possible methods to calculate

the sound radiation when using Lighthill’s theory (section 2.6). In the first case we use a tailored

Green’s function which is often easy to calculate in the far field approximation by using the reciprocity

principle (3.4). In the second case we can use the free field Green’s function G0 which implies that

we should take surface contributions in equation (3.12) into account. This second method is called

Curle’s method [70, 16]. The advantage of the method of Curle is that we still can use the symmetry

properties of G0 like:

∂G0

∂yi

= −∂G0

∂xi

. (6.71)

Furthermore, we will see that the surface terms have for compact rigid bodies quite simple physical

meaning. We will see that the pulsation of the volume of the body is a volume source while the force
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on the body is an aero-acoustic dipole. In this way we can in fact say that if we know the aerodynamic

(lift and drag) force on a small propeller we can represent the system by the reaction force acting on

the fluid as an aero-acoustic source, ignoring further the presence of the body in the calculation of the

radiation.

6.6.2 Tailored Green’s function

The method of tailored Green’s function has of course the nice feature of a simple integral equation

(3.13). We will, however, in general not have a simple symmetry relation allowing to move the space

derivative outside the integral. The construction of the tailored Green’s function in the far field ap-

proximation is in fact equivalent to considering the acoustic response of the body to a plane incident

wave. In applications like the effect of a bubble on turbulence noise we already did this for a bubble

in a duct (section 4.7).

The method of images discussed in section 6.4 is an efficient procedure to construct a Green’s function

for simple geometries. This is obvious when we consider a plane rigid wall. Using the reciprocity

principle we send a plane wave p′
in and look at the resulting acoustic field in the source point y. The

acoustic field in y is built out of the incident wave p′
in and the wave reflected at the surface p′

r . In the

method of images we simply assume that p′
r comes from an image source, as shown in figure 6.7.

a) b)

x x

y y

p′
in

p′
r

source

image

Figure 6.7 a) Acoustic response to a plane wave. b) Sound emitted by the source in the same observers direction.

When calculating the Green’s function we should take in free space as amplitude of the incident wave

p′
in the amplitude calculated from (6.37). For compact bodies or sources close to a surface we can

neglect the variation in travel time of p′
in over the source region and we find:

p′
in = δ(−t + τ − |x|/c0)

4π |x|c2
0

(6.72)

where the signs of t and τ have been changed because of reciprocity relation (3.4). When considering

harmonic waves we have from (6.36) that:

p̂in = e−ikr

8π2c2
0r

(6.73)

where in the far field approximation r ≃ |x|. The Green’s function is found by adding the system

response p′
r (or p̂r ) to the incident wave p′

in. Once a tailored Green’s function has been obtained we
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find by using (3.13):

ρ ′(x, t) =
t∫

−∞

∫∫∫

V

q(y, τ )G(x, t|y, τ ) d ydτ. (3.13)

By partial integration and assuming that the sources are the volume sources ∂2Ti j/∂xi∂x j as defined

in (2.65) which are limited to a small region of space we find:

ρ ′(x, t) =
t∫

−∞

∫∫∫

V

∂2G

∂yi∂y j

Ti j d ydτ. (6.74)

Comparison of the space derivative of the tailored Green’s function with that of the free space Green’s

function G0 yields an amplification factor A of the radiated field:

A =
∣∣∣ ∂

2G

∂yi∂y j

∣∣∣/
∣∣∣ 1

c2
0

∂2G0

∂t2

∣∣∣ (6.75)

where we made use of the approximation ∂2G0/∂xi∂x j ≃ (∂2G0/∂t2)/c2
0 in the far field, and assumed

that the flow is not influenced by the foreign body (Ti j = constant).

Using this procedure one can show [16, 52, 70] that turbulence near the edge of a semi-infinite plane

produces a sound field for which ρ ′2 scales as M5
0 which implies for M0 ≪ 1 a dramatic increase

(by a factor M−3
0 ) compared to free field conditions. This contribution to trailing edge noise is very

important in aircraft noise and wind turbine noise.

6.6.3 Curle’s method

When we place a cylinder of diameter d in a turbulent jet with a main flow velocity u0, the cylinder

will not only enhance the radiation by the already present turbulence. A cylinder will affect the flow.

Behind the cylinder at high Reynolds numbers we have an unstable wake. Above a Reynolds number

of Re = u0d/ν = 40 the wake structure is dominated by periodic vortex shedding if 40 6 Re 6

3 × 105 and for Re > 3.5 × 106 [16, 18, 75]. The frequency fV of the vortex shedding is roughly

given by:

fV d

u0

= 0.2. (6.76)

Hence the sound produced by vortex shedding has in contrast with turbulence a well-defined fre-

quency. The periodic shedding of vorticity causes an oscillating lift force on the cylinder, with an

amplitude L per unit length given by

L = −ρ0Ŵu0, (6.77)

where Ŵ is the circulation of the flow around the cylinder. By definition the lift force is perpendicular

to the mean flow direction (u0). In dimensionless form the lift is expressed as a lift coefficient CL :

CL = L
1
2
ρu2

0d
. (6.78)
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The lift coefficient of a cylinder is in a laminar flow of order unity. However, CL is strongly affected

by small disturbances and the lift force is not always coherent along the cylinder. This results in a CL

for a rigid stationary cylinder ranging

from (CL)rms ≃ 0.1 for Re 6 2 × 105

to (CL)rms ≃ 0.3 for Re > 5 × 105,

while (CL)peak ≃ 1.0 for Re 6 2 × 105

and (CL)peak ≃ (CL)rms for Re > 2 × 105.

The drag force has a fluctuating component corresponding to (CD)rms ≃ 0.03. Elastic suspension of

a cylinder enhance considerably the coherence of vortex shedding resulting into a typical value of

CL ≃ 1. The calculation of the sound production by vortex shedding when using a tailored Green’s

function is possible but is not the easiest procedure. We will now see that Curle’s method relates

directly the data on the lift and drag to the sound production.

S

n

V

Figure 6.8 Control volume V and surface S

and outer normal n.

Consider a body which, for generality, is allowed to pulsate,

and is enclosed by a control surface S (figure 6.8). We want

to calculate the field ρ ′ in the fluid and hence we define the

control volume V at the fluid side of S. The outer normal

n on S is directed towards the body enclosed by S. (Note

that we use here the convention opposite from Dowling et

al. [52]!) Using equation (3.12) combined with Lighthill’s

analogy (2.65), ignoring external mass sources and force

fields and taking t0 = −∞ yields

ρ ′ =
t∫

−∞

∫∫∫

V

∂2Ti j

∂yi∂y j

G0(x, t|y, τ ) d ydτ − c2
0

t∫

−∞

∫∫

S

[
ρ ′ ∂G0

∂yi

− G0

∂ρ ′

∂yi

]
ni dσdτ. (6.79)

Applying partial integration twice yields:

ρ ′ =
t∫

−∞

∫∫∫

V

Ti j

∂2G0

∂yi∂y j

d ydτ +
∫ t

−∞

∫∫

S

{[
G0

∂Ti j

∂yi

n j − Ti j

∂G0

∂y j

ni

]

+ c2
0

[
G0

∂ρ ′

∂yi

ni − ρ ′ ∂G0

∂yi

ni

]}
dσdτ. (6.80)

Using the definition (2.66) of Ti j and its symmetry (Ti j = T j i):

Ti j = Pi j + ρviv j − c2
0ρ

′δi j (2.66)

we find:

ρ ′ =
t∫

−∞

∫∫∫

V

Ti j

∂2G0

∂yi∂y j

d ydτ +
t∫

−∞

∫∫

S

G0

(∂Pi j + ρviv j

∂y j

)
ni dσdτ

−
t∫

−∞

∫∫

S

(
Pi j + ρviv j

)∂G0

∂y j

ni dσdτ. (6.81)
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Using the momentum conservation law (1.2) in the absence of external forces ( fi = 0):

∂

∂τ

(
ρvi

)
+ ∂

∂y j

(
Pi j + ρviv j

)
= 0

and the symmetry of G0 (6.70), we obtain:

ρ ′ =
t∫

−∞

∫∫∫

V

Ti j

∂2G0

∂xi∂x j

d ydτ −
t∫

−∞

∫∫

S

G0

∂(ρvi)

∂τ
ni dσdτ

+
t∫

−∞

∫∫

S

(
Pi j + ρviv j

)∂G0

∂x j

ni dσdτ. (6.82)

The spatial partial derivatives (∂/∂x j) do not refer to y and can be taken outside the integral. In the

far field they can be approximated by the time derivatives −(x j/|x|)c−1
0 (∂/∂t). Furthermore, in the

second integral in (6.82) we can make use of the general symmetry in the time coordinate of any

Green’s function:

∂G

∂t
= −∂G

∂τ
. (6.83)

(The effect of listening later is the same as shooting earlier!) In order to use (6.83) we therefore first

move the time derivative (∂/∂τ) from ρvi towards G0 by partial integration. We finally obtain:

ρ ′ ≃ xi x j

|x|2c2
0

∂2

∂t2

∫ t

−∞

∫∫∫

V

Ti j G0 d ydτ − ∂

∂t

∫ t

−∞

∫∫

S

ρvi G0ni dσdτ

− x j

c0|x|
∂

∂t

t∫

−∞

∫∫

S

(
Pi j + ρviv j

)
G0ni dσdτ. (6.84)

Using the δ-function in G0 of equation (6.37), we can carry out the time integrals and we have Curle’s

theorem

ρ ′ ≃ xi x j

4π |x|2c4
0

∂2

∂t2

∫∫∫

V

[Ti j

r

]
t=te

d y − 1

4πc2
0

∂

∂t

∫∫

S

[ρvini

r

]
t=te

dσ

− x j

4π |x|c3
0

∂

∂t

∫∫

S

[(
Pi j + ρviv j

)ni

r

]
t=te

dσ (6.85)

where r = |x − y| and the retarded time te is

te = t − r/c0 ≃ t − |x|/c0. (6.86)

The first term in (6.85) is simply the turbulence noise as it would occur in absence of a foreign body

(except for the fact that the control volume V excludes the body).

The second term is the result of movement of the body. For a rigid body at a fixed position we have

vi ni = v ·n = 0. This term is important when the body is pulsating. For a compact body we have then
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a simple volume source term. This term can be used to describe the flow out of a pipe. Note that ρ is

the fluid density just outside the control surface so that we consider the displacement of fluid around

the body, rather than a mass injection.

The last integral in (6.85) is the momentum flux through the surface and the pressure and viscous

forces. For a fixed rigid body ρviv j = 0 because v = 0 at a surface (“no slip” condition in viscous

flow). In the case of a compact, fixed, and rigid body, we can neglect the emission time variation along

the body, and we have r ≃ |x|. The instantaneous force Fi of the fluid on the body (lift and drag) is

then

Fi (te) ≃
∫∫

S

[
Pi j

]
t=te

n j dσ. (6.87)

Hence, for a fixed rigid compact body we have:

ρ ′(x, t) = xi x j

4π |x|3c4
0

∂2

∂t2

∫∫∫

V

Ti j (y, t − |x|/c0) d y − x j

4π |x|2c3
0

∂

∂t
F j (t − |x|/c0). (6.88)

6.7 Sound radiation from an open pipe termination

Horns and tubes are used as an impedance matching between a volume source and free space. We use

such a device to speak! Without vocal tract the volume source due to the vocal fold oscillation would

be a very inefficient source of sound. We consider now the radiation of sound from such a tube.

We know the behaviour of sound waves in a duct at low frequencies (chapter 4). We know how sound

propagates from a point source in free space. We are now able to find the radiation behaviour of a pipe

end by matching the two solutions in a suitable way. If the frequency is low enough compared to the

pipe diameter, the flow near the pipe end is incompressible in a region large enough to allow the pipe

opening to be considered as a monopole sound source. The strength of this monopole is determined

by the pipe end velocity v′. For convenience, we assume that the pipe end is acoustically described for

the field inside the pipe by an impedance Z p. The pressure p′ in the pipe consists of a right-running

incident wave and a left-running reflected wave:

p′ = p+ + p−. (6.89)

The acoustic velocity in the pipe is related to the acoustic pressure in the pipe by:

v′ = v̂ eiωt = p+ − p−

ρ0c0

. (6.90)

Assuming a redistribution of the acoustic mass flow v′S through the pipe end with cross section S into

the surface of a compact sphere of radius r and surface 4πr2 (conservation of mass), we can calculate

the radiated power for a harmonic field in- and outside the pipe, by using (6.13):

I S = 〈p′v′〉S = 1
2
v̂v̂∗ Re(Z p)S = 1

2

( S

4πr2
v̂
)( S

4πr2
v̂∗

)
(k2r2ρ0c0)(4πr2). (6.91)

From this conservation of energy relation we find for the real part of the radiation impedance Z p of

an unflanged pipe:

Re(Z p) = 1

4π
k2Sρ0c0 (6.92)
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which is for a pipe of radius a:

Re(Z p) = 1
4
(ka)2ρ0c0. (6.93)

This result is the low frequency limit of the well-known theory of Levine and Schwinger [118].

The imaginary part Im(Z p) takes into account the inertia of the air flow in the compact region just

outside the pipe. It appears that Im(Z p) is equal to kδ, where δ is the so-called “end correction”. This

seen as follows. Just outside the pipe end, in the near field of the monopole, the pressure is a factor

ρ0c0kr lower than the acoustic velocity, which is much smaller than the ρ0c0 of inside the pipe (see

equation 6.7). Therefore, the outside field forces the inside pressure to vanish at about the pipe end.

Although the exact position of this fictitious point x = δ (the “end correction”), where the wave in the

pipe is assumed to satisfy the condition p = 0, depends on geometrical details, it is a property of the

pipe end and therefore δ = O(a). This implies that the end correction amounts to leading order in ka

to nothing but a phase shift of the reflected wave and so to a purely imaginary impedance Z p. Up to

order (ka)2 this impedance can now be expressed as:

Z p = (ikδ + 1
4
(ka)2)ρ0c0 (6.94)

where it appears that2:

0.61a 6 δ 6 0.85a (6.95)

for circular pipes [176]. The lower limit corresponds to an unflanged pipe while the upper limit cor-

responds to a pipe end with an infinite baffle (flanged). See also section 7.9.

Exercises

a) Note that the acoustic field generated by a compact translating sphere is a dipole (equation 6.21) we find

the typical cosϑ = xi yi/|x|| y| directivity. What are the source and the sink forming the dipole? (Explain

qualitatively.)

b) A vortex ring with time dependent vorticity is a dipole. (Explain qualitatively.)

c) An electrical dipole radiates perpendicularly to the axis of the dipole. What is the reason for this differ-

ence in directivity of electrical and acoustic dipoles?

d) Why is the boundary condition p′ = 0 reasonable for acoustic waves reflecting at a water/air interface

(on the water side)?

e) We have seen (section 6.2) that a translating sphere induces a dipole field. Moving parts of a rigid

machine also act as dipoles if they are compact. Explain why a body translating in an oscillatory manner

close to the floor produces more sound when it moves horizontally than vertically.

f) The acoustic pressure p′ generated by a monopole close to a wall increases by a factor 2 in comparison

with free field conditions. Hence the radiated I intensity increases by a factor 4. How much does the

power generated by the source increase?

g) The cut-off frequency fc above which the first higher mode propagates in a duct with square cross section

appears to be given by 1
2
λ = 1

2
c0 fc = h. figure 6.4 suggests that this would be c0 fc = h for a source

placed in the middle of the duct. Explain the difference.

h) In a water channel with open surface sound does not propagate below a certain cut-off frequency fc.

Explain this and calculate fc for a square channel cross section h = 3 m.

2 − 1
π

∫ ∞
0 log(2I1(x)K1(x))

dx
x2 = 0.612701035 . . . , 2

∫ ∞
0 J1(x)

dx
x2 = 8

3π
= 0.848826363 . . .
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h

h

i) Consider a sphere oscillating (translating periodically) in an infinite duct with hard walls and square cross

section. Discuss the radiation as function of the oscillation frequency and the direction of oscillation

(along the duct axis or normal to the axis). Relate the dipole strength δQ to the amplitude of the acoustic

waves for f < fc in a pipe of cross sectional area S.

j) Explain by using the method of images why a line quadrupole placed near a cylinder, parallel to the

axis of the cylinder (figure 6.9), will radiate as a line dipole. (This explains that turbulence near such a

cylinder will radiate quite effectively [133]!)

Figure 6.9 A line quadrupole near a cylinder.

k) Consider two jet engines developing the same thrust with diameters D1 and D2 = 2D1, respectively.

Assuming a low Mach number estimate the ratio of the sound power generated by both engines.

l) Which scaling rule do you expect for the Mach number dependence of the sound produced by a hot

steam in cold air?

m) Which scaling rule do you expect for the Mach number dependence of the sound produced by a bubbly

liquid jet in water?

n) Typical entropy fluctuations due to friction at the pipe wall from which the jet is leaving correspond to

temperature fluctuations T ′/T0 ≃ 0.2M2. At which Mach number do you expect such effect to become

a significant source of sound?

o) A subsonic jet with M ≪ 1 is compact if we consider the sound produced by turbulence. Why?

p) Estimate the amplification of turbulence noise due to the presence of a cylinder of diameter d near a free

jet of diameter D at a main speed u0 if we assume that the cylinder does not affect the flow.

q) Same question for a small air bubble of diameter 2a near a free jet of diameter D and speed u0. Assume

a low frequency response of the bubble.

r) Consider a small ventilator rotating at a radial frequencyω in a uniform flow u0. The fan feels at a certain

distance r from the axis of the ventilator an effective wind velocity veff which is a combination of the

axial velocity u0 and the tangential velocity ωr (where we neglect the air rotation induced by the fan)

(figure 6.10). Assume that u0 = 0.1ωR. If we concentrate on the tip of the fan (r = R) we have a lift

force L, per unit length, which is normal to veff. The magnitude of L is given by:

L = 1

2
ρv2

eff DCL
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u0

ωR

veff

L

D

Figure 6.10 The forces on a fan blade (Exercise r)

where D is the width of the profile of the blade. Typically CL is O(1) for a well-designed ventilator.

Consider first a ventilator with a single blade. Discuss the contribution of the tangential and axial com-

ponents of the lift for L on the noise. What is the effect of having a second blade on the ventilator? (See

figure 6.11.) A well-designed ventilator has many blades. How does this affect sound production?

D

R

ω ω

Figure 6.11 Single and dual bladed ventilator (Exercise r)

s) How does the presence of duct walls influence the low-frequency sound production of an axial ventilator

placed in the duct.

t) Consider an airplane with a rotor placed just behind the wing (figure 6.12). Discuss the sound production

(frequency, directivity . . . ).

Figure 6.12 Propeller in pusher position (Exercise t)

u) Can we consider an aircraft propeller as a compact body?

v) What is the Mach number dependence of the sound produced by a small (compact) body placed in a

turbulent flow?

w) Estimate the low frequency impedance Z p of a flanged pipe termination.

x) Assuming a low frequency, calculate the power radiated in free space by a piston placed at the end of a

circular pipe of radius a and length L (figure 6.13). What is the ratio between this power at resonance

k0L = (n + 1
2
)π , and the power which would be radiated by the piston without a pipe.
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vp(t)

L

2a

Figure 6.13 Piston in cylindrical pipe (Exercise x)

vp(t)

L

S1 S2

Figure 6.14 Piston in conical pipe (Exercise y)

y) Consider a conical pipe driven by a piston of surface S1 and with an outlet surface S2 (figure 6.14).

Determine the sound field inside the pipe. Hint. Use spherical waves centred at the cone top!

z) A small transistor radio is not able to produce low frequencies (why?). We hear low frequencies because

our ear is artificially guessing these low frequencies when we supply a collection of higher harmon-

ics (figure 6.15). On the other hand, when using a Walkman we are actually provided with real, low

frequencies. Why is this possible even though the loudspeaker is a miniature device?

f0 2 f0 3 f0 4 f0 f0 2 f0 3 f0 4 f0

Figure 6.15 We hear the missing fundamental! (Exercise z)

A) Calculate the friction and radiation losses in a clarinet. Assume a tube radius of 1 cm and a length of 1

m. Carry out the calculation for the first three modes of the instrument. What is the difference between

the radiation losses of a clarinet and of a flute with the same pipe dimensions.

B) How far can we be heard when we scream in quiescent air if we produce 10−5 W acoustic power?

C) Calculate the ratio between the acoustic impedance experienced by an air bubble of radius a0 = 1 mm

in water at atmospheric pressure:

– in free space;

– in an infinite duct of cross sectional area S = 10−4 m2.

D) Consider two twin pipes of length L and radius a, placed along each other in such a way that correspond-

ing ends of either pipe just touch each other. Assume that the pipes are acoustically excited and oscillate

in opposite phase. How does the radiation losses of the system scale with L and a.
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In a duct of constant cross section the reduced wave (or Helmholtz) equation may be solved by means

of a series expansion in a particular family of solutions, called modes. They are related to the ei-

gensolutions of the two-dimensional Laplace operator acting on a cross section. Therefore, the ter-

minology of modes contains many references to the corresponding eigenvalues.

Modes are interesting mathematically because they form, in general, a complete basis by which any

solution can be represented. Physically, modes are interesting because they are solutions in their own

right, not just mathematical building blocks, and by their simple structure the usually complicated

behaviour of the total field is more easily understood.

7.1 General formulation

The time-harmonic sound field in a duct of constant cross section with linear boundary conditions

that are independent of the axial coordinate may be described by an infinite sum of special solutions,

called modes, that retain their shape when travelling down the duct. They consist of an exponential

term multiplied by the eigenfunctions of the Laplace operator corresponding to a duct cross section.

DA

∂A

n

x

y

z

Figure 7.1 A duct D of cross section A.

Consider the two-dimensional area A with a smooth boundary ∂A and an externally directed unit

normal n. For physical relevance A should be simply connected, otherwise we would have several

independent ducts. When we consider, for definiteness, this area be part of the y, z-plane, it describes

the duct D (see Fig. 7.1) given by

D = {(x, y, z)|(y, z) ∈ A} (7.1)

with axial cross sections being copies of A and where the normal vectors n are the same for all x . In

the usual complex notation (with +iωt–sign convention), the acoustic field

p(x, t) ≡ p(x, ω) eiωt , v(x, t) ≡ v(x, ω) eiωt (7.2)
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satisfies in the duct (x ∈ D) the equations

∇2 p + ω2 p = 0, (7.3a)

iωv + ∇ p = 0. (7.3b)

Solutions of a more general time-dependence may be constructed via Fourier synthesis in ω (equation

C.2). At the duct wall we assume the boundary condition

B(p) = 0 for x ∈ ∂D (7.4)

where B is typically of the form (c.f. for example Eqs. (3.14) or (3.42))

B(p) = a(y, z)(n·∇ p)+ b(y, z)p + c(y, z) ∂
∂x

p. (7.5)

Self-similar solutions (called modes) of the form p(x, y, z) = φ(x)ψ(y, z) exist for φ(x) = e−ikx

with particular values of k and associated functions ψ . This leads to general solutions given by

p(x, y, z) =
∞∑

n=0

Cnψn(y, z) e−ikn x (7.6)

where ψn are the eigenfunctions of the Laplace operator reduced to A, i.e. solutions of

−
(
∂2

∂y2 + ∂2

∂z2

)
ψ = α2ψ for (y, z) ∈ A,

with B̃(ψ;α) = 0 for (y, z) ∈ ∂A,
(7.7)

where α2 is the corresponding eigenvalue and the eigenmode boundary condition operator B̃ is

B̃(ψ;α) = a(y, z)(n·∇ψ)+ b(y, z)ψ − ik(α)c(y, z)ψ. (7.8)

The axial wave number k is given by one of the square roots k = ±
√
ω2 − α2 (+ for right and −

for left running). Each term in the series expansion, i.e. ψn(y, z) e−ikn x , is called a duct mode. If the

duct cross section is circular or rectangular and the boundary condition is uniform everywhere, the

solutions of the eigenvalue problem are relatively simple and may be found by separation of variables.

These eigensolutions consist of combinations of exponentials and Bessel functions in the circular

case or combinations of trigonometric functions in the rectangular case. Some other geometries, like

ellipses, do also allow explicit solutions, but only in special cases such as with hard walls. For other

geometries one has to fall back on numerical methods for the eigenvalue problem. As a final remark,

we note that the above solution only needs a minor adaptation to cope with a uniform mean flow inside

the duct.

By application of Green’s theorem it can easily be shown that the set of eigenfunctions {ψn} is bi-

orthogonal to their complex conjugates {ψ∗
n }. In other words, the innerproduct

(ψn, ψ
∗
m) =

∫∫

A

ψnψm dσ

{
= 0 if n 6= m,

6= 0 if n = m.
(7.9)

(Some care is required when, due to a symmetric geometry, each αn is linked to more than one ψn .)

This implies that for real ψn and real αn, which is for example the case for hard-walled ducts where

Z = ∞, the set of eigenfunctions is bi-orthogonal to itself: in other words is orthogonal. This ortho-

gonality can be used to obtain the amplitudes of the expansion. See section 7.7.

In the following sections, we will present the modes with their properties and applications for cyl-

indrical ducts with both hard walls and soft walls of impedance type, as well as for rectangular ducts.
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7.2 Cylindrical ducts

Consider in a duct, with radius a, uniform sound speed c0 and mean density ρ0, time-harmonic acous-

tic waves of angular frequency ω. We scale our variables as follows

x := ax, t := at/c0, p := ρ0c2
0 p, ρ := ρ0ρ, v := c0v, and ω := ωc0/a,

while intensity scales on ρ0c3
0 and power on ρ0c3

0a2. Note that ω, the dimensionless frequency or

dimensionless free field wave number1, is just the Helmholtz number.

In the present polar coordinates

∇ = ex

∂

∂x
+ er

∂

∂r
+ eϑ

1

r

∂

∂ϑ
, (7.10a)

∇2 = ∂2

∂x2
+ ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϑ2
, (7.10b)

and so the reduced wave equation (7.3a) becomes

∂2 p

∂x2
+ ∂2 p

∂r2
+ 1

r

∂p

∂r
+ 1

r2

∂2 p

∂ϑ2
+ ω2 p = 0. (7.11)

We begin with a hard-walled hollow duct, which has the wall boundary condition

∂p

∂r
= 0 at r = 1. (7.12)

Solutions of modal type may be found by separation of variables, i.e. by assuming the form p =
F(x)ψ(y, z) = F(x)G(r)H (ϑ)

(d2 H

dϑ2

)
/H = −m2 (7.13a)

(d2G

dr2
+ 1

r

dG

dr

)
/G = m2

r2
− α2 (7.13b)

(d2 F

dx2

)
/F = α2 − ω2 (7.13c)

so that

(a) H (ϑ) = e−imϑ , m = 0,±1,±2, · · · .

Here, use is made of the condition of continuity from ϑ = 0 to ϑ = 2π .

(b) G(r) = Jm(αmµr), µ = 1, 2, · · · , where:

Jm denotes the ordinary Bessel function of the first kind (Appendix D);

αmµ = j ′
mµ is the µ-th nonnegative non-trivial zero of J ′

m , to satisfy the boundary condition

G ′(1) = 0.

(c) F(x) = e∓ikmµx , with:

kmµ =
√
ω2 − α2

mµ such that Re(kmµ) > 0, Im(kmµ) 6 0.

1in dimensional form better known as ka.
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Although technically speaking {α2
m,µ} are the eigenvalues of (minus) the cross-sectional Laplace op-

erator, it is common practice to refer to αmµ as the radial eigenvalue or radial modal wave number, to

m as the circumferential eigenvalue or circumferential wave number, and to kmµ as the axial eigen-

value or axial wave number. The associated solutions are called duct modes, and they form a complete

set of building blocks suitable for constructing any sound field in a duct. At the same time, they are

particular shape-preserving solutions with easily interpretable properties.

Note that all αmµ and m are real, while only a finite number of kmµ are real; see figure 7.2). The branch
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Figure 7.2 Complex axial wave numbers ±kmµ (m = 0, ω = 5).

They are found along the branch cuts of the square root of figure 3.5, where

√
ω2 − k2

mµ = jmµ is real positive.

we selected here of the complex square root kmµ is such that e−ikmµx describes a right-running wave

and eikmµx a left-running wave. This will be further clarified later.

These modes (normalized for convenience)

pmµ(x, r, ϑ) = Umµ(r) e−imϑ∓ikmµx, (7.14)

Umµ(r) = Nmµ Jm(αmµr),

Nmµ =
{

1
2
(1 − m2/α2

mµ)Jm(αmµ)
2
}−1/2

,

form (for fixed x) a complete set (in L2-norm over (r, ϑ)), so by superposition we can write any

solution as the following modal expansion:

p(x, r, ϑ) =
∞∑

m=−∞

∞∑

µ=1

(Amµ e−ikmµx +Bmµ eikmµx)Umµ(r) e−imϑ .

(7.15)

The normalization factor Nmµ is chosen such that a modal amplitude Amµ scales with the energy

content of the corresponding mode (see below).

A surface of constant phase, i.e. mϑ + Re(kmµ)x = constant, is a helicoid of pitch 2πm/Re(kmµ);

see figure 7.3.
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x-axis

Figure 7.3 Surface of constant phase mϑ + Re(kmµ)x .

An important special case is the plane wave m = 0, µ = 1, with

j ′
01 = 0, α01 = 0, k01 = ω, N01 =

√
2, p01 =

√
2 e−iωx .

In fact, this is the only non-trivial eigenvalue equal to zero. All others are greater, the smallest being

given by

j ′
11 = 1.84118 · · · .

Since the zeros of J ′
m form an ever increasing sequence both in m and in µ (with j ′

mµ ≃ (µ+ 1
2
m− 1

4
)π

for µ → ∞) (see Appendix D), there are for any ω always a (finite) µ = µ0 and m = m0 beyond

which α2
mµ > ω

2, so that kmµ is purely imaginary, and the mode decays exponentially in x .

So we see that there are always a finite number of modes with real kmµ (see figure 7.2). Since they are

the only modes that propagate (see below), they are called cut-on. The remaining infinite number of

modes, with imaginary kmµ, are evanescent and therefore called cut-off. This cut-on and cut-off modes

are essentially similar to the radiating and evanescent waves discussed in section 3.3.

For low frequency, i.e. for

ω < j ′
11 = 1.84118 · · ·

all modes are cut-off except for the plane wave. In this case a plane wave approximation (i.e. consider-

ing only the first mode) is applicable if we are far enough away from any sources, changes in boundary

condition, or other scattering objects, for the generated evanescent modes to become negligible.

From the orthogonality relation2 of equation 7.9 (note that we have here a hard-walled duct)

∫ 1

0

∫ 2π

0

Umµ(r) e−imϑ
(

Unν(r) e−inϑ
)∗

r dϑdr = 2πδmnδµν (7.16)

we find by integration of the time-averaged axial intensity

〈I · ex〉 = 1
4
(pu∗ + p∗u) = 1

2
Re(pu∗)

over a duct cross section x = constant the transmitted acoustic power

P = π

ω

∞∑

m=−∞

∞∑

µ=1


Re(kmµ)(|Amµ|2 − |Bmµ|2)+ 2 Im(kmµ) Im(A∗

mµBmµ)


. (7.17)

2 δi j = 1 if i = j, δi j = 0 if i 6= j
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The summation over Re(kmµ) contains only a finite number of non-zero terms: the cut-on modes.

By taking either Amµ or Bmµ equal to zero, it is clear that a cut-on exp(−ikmµx)-mode propagates

in positive direction, and a cut-on exp(ikmµx)-mode in negative direction (for the present +iωt–

sign convention). Indeed, with Im(kmµ) 6 0, the respective cut-off modes decay in the propagation

direction, and we can say that a mode propagates or decays exponentially depending on the frequency

being lower or higher than the cut-off or resonance frequency

fc =
j ′
mµc0

2πa
. (7.18)

As is clear from the second part of expression (7.17), cut-off modes may transport energy by in-

teraction between right- and left-running (Amµ and Bmµ) modes. It should be noted, however, that

(depending on the choice of the origin x = 0) usually either the right- or left-running cut-off modes

Amµ or Bmµ are exponentially small, and the product A∗
mµBmµ is therefore quickly negligible.

The axial phase velocity (C.19) of a cut-on mode is equal to

vph = ω

kmµ

(7.19)

The axial group velocity (C.21) of a cut-on mode is given by

vg =
(dkmµ

dω

)−1

= kmµ

ω
. (7.20)

Note that

vgvph = 1, with vg < 1 < vph. (7.21)

The axial group velocity is lower than the soundspeed because the modal wave fronts do not propagate

parallel to the x-axis, but rather follow a longer path, spiralling around the x-axis, with a right-hand

rotation for m > 0 and a left-hand rotation for m < 0.

7.3 Rectangular ducts

In a completely analogous way as in the foregoing section 7.2, the general modal solution, similar to

(7.15), of sound propagation in a rectangular hard walled duct, can be found as follows.

Separation of variables p(x, y, z) = F(x)G(y)H (z) applied to ∇2 p+ω2 p = 0 in the duct 0 ≤ x ≤ a,

0 ≤ y ≤ b, results into Fx x = −α2F , G yy = −β2G and Hzz = −(ω2 − α2 − β2)H , where α and β

are eigenvalues to be determined from the hard-wall boundary conditions. We obtain

F(x) = cos(αnx), αn = nπ
a
, n = 0, 1, 2, . . .

G(x) = cos(βm x), βm = mπ
b
, m = 0, 1, 2, . . .

H (z) = e∓iknm z, knm = (ω2 − α2
n − β2

m)
1/2,

where Re(knm) ≥ 0 and Im(knm) ≤ 0. So the general solution is

p(x, y, z) =
∞∑

n=0

∞∑

m=0

cos(αnx) cos(βm y)(Anm e−iknm z +Bnm eiknm z).

(7.22)
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7.4 Impedance wall

7.4.1 Behaviour of complex modes

When the duct is lined with sound absorbing material of a type that allows little or no sound propaga-

tion in the material parallel to the wall, the material is called locally reacting and may be described by

a wall impedance Z(ω) (scaled on ρ0c0). This gives in the acoustic problem the following boundary

condition in the frequency domain:

iωp

∣∣∣
r=1

= −Z(ω)
∂p

∂r

∣∣∣∣
r=1

, (7.23)

the impedance being defined as p/(v ·n) with n a normal pointing into the surface. A typical practical

example is: the inlet of an aircraft turbojet engine. The previous concept of a modal expansion, with

modes again retaining their shape travelling down the duct, is also here applicable. The general solu-

tion has a form similar to (7.14) and (7.15), the hard walled case. Only the eigenvalues αmµ are now

defined by

Jm(αmµ)

αmµ J ′
m(αmµ)

= i Z

ω
, (7.24)

related to kmµ by the same square root as before:

kmµ =
√
ω2 − α2

mµ,

but another normalization may be more convenient. A normalization that preserves the relation

∫ 1

0

Umµ(r)U
∗
mµ(r)r dϑdr = 1

(note that now the modes are not orthogonal) is

Nmµ =
{ |αmµ J ′

m(αmµ)|2 Re(Z)

Im(α2
mµ)ω

}−1/2

. (7.25)

Qualitatively, the behaviour of these modes in the complex kmµ-plane is as follows.

If Im(Z) > 0, all modes may be found not too far from their hard wall values on the real interval

(−ω,ω) or the imaginary axis (that is, with αmµ = j ′
mµ, and Im(kmµ) 6 0.) More precisely, if we

vary Z from |Z | = ∞ to Z = 0, αmµ varies from its |Z | = ∞-value j ′
mµ to its Z = 0-value jmµ.

( jmµ is the µ-th zero of Jm .) These jmµ and j ′
mµ are real and interlaced according to the inequalities

j ′
mµ < jmµ < jm,µ+1 < etc., so the corresponding kmµ are also interlaced and shift into a direction of

increasing mode number µ.

However, if Im(Z) < 0 (for +iωt-sign convention), a couple of two modes wander into their quarter

of the complex plane in a more irregular way, and in general quite far away from the others. In figure

7.5 this behaviour is depicted by the trajectories of the modes as the impedance varies along lines of

constant real part (figure 7.4). Compare this figure with figure 3.1 of the related 2-D problem, which

may be considered as the high-frequency approximation of the duct problem. (Note the notation! α

in the 2-D problem corresponds to kmµ here.) For small enough Re(Z) (smaller than, say, 2) we see

the first (µ=1) mode being launched into the complex kmµ-plane when Im(Z) is negative, and then
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✻

real axis

imaginary

axis Re(Z) =constant

Z ∈ C

Figure 7.4 Complex impedance plane.

returning as a (for example) µ=4 or 2 mode when Im(Z) is positive. We will call these irregular modes

surface waves: their maximum is at the wall surface, and away from the wall they decay exponentially

([195]). This is most purely the case for an imaginary impedance Z = i X . See figure 7.6.

A solution αmµ = i̺mµ, ̺mµ real, may be found3 satisfying

Im(̺mµ)

̺mµ I ′
m(̺mµ)

= − X

ω
if − ω

m
< X < 0. (7.26)

The modal shape in r , described by Jm(αmµr) = im Im(̺mµr), is exponentially restricted to the imme-

diate neighbourhood of r = 1 and indeed shows the surface wave character, since the modified Bessel

function Im(x) has exponential behaviour for x → ∞. It is interesting to note that the corresponding

axial wave number kmµ = (ω2 + ̺2
mµ)

1/2 is now larger than ω. Hence, the modal phase velocity is

smaller than the sound speed, which is indeed to be expected for a non-radiating surface wave. The

group velocity (7.20) depends on Z(ω).

7.4.2 Attenuation

Usually, lining is applied to reduce the sound level by dissipation. It is a simple exercise to verify that

the time-averaged intensity at the wall directed into the wall (i.e. the dissipated power density) of a

mode is

〈I ·er〉 ∝ Im(α2
mµ). (7.27)

A natural practical question is then: which impedance Z gives the greatest reduction. This question

has, however, many answers. In general, the optimum will depend on the source of the sound. If

more than one frequency contributes, we have to include the way Z = Z(ω) depends on ω. Also

the geometry may play a rôle. Although it is strictly speaking not dissipation, the net reduction may

benefit from reflections at discontinuities in the duct (hard/soft walls, varying cross section).

A simple approach would be to look at the reduction per mode, and to maximize the decay rate of

the least attenuated mode, i.e. the one with the smallest | Im(kmµ)|. A further simplification is based

on the observation that the decay rate Im(kmµ) of a mode increases with increasing order, so that a

(relatively) large decay rate is obtained if the first and second mode (of the most relevant m) coalesce

(Cremer’s optimum). This is obtained if also the derivative to αmµ of (7.24) vanishes, yielding the

additional condition

J ′
m(αmµ)

2 +
(

1 − m2

α2
mµ

)
Jm(αmµ)

2 = 0 (7.28)

3The function h(z) = z I ′
m (z)/Im (z) increases monotonically in z, with h(0) = m, and h(z) ∼ z as z → ∞.
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Figure 7.5 Trajectories of kmµ (m = 0, ω = 5) for Im(Z) varying from −∞ to ∞ and fixed Re(Z) = (a) 0.5, (b) 1.0,

(c) 1.5, (d) 2.0.
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Figure 7.7 Trajectories of kmµ (m = 0, ω = 5) passing Cremer’s optimum. At Z = (1.4165, -0.6082) the first two

modes coalesce as k01=k02=(4.3057,-0.8857). Im(Z) varies from −∞ to ∞ and Re(Z) is fixed at 1.4165 .

(see also exercise 7d). An example is given in figure 7.7. Note that no mode is lost, as the two corres-

ponding modes degenerate into

Jm(αmµr)Nmµ e−ikmµx−imϑ , (7.29a)(
αmµx Jm(αmµr)− ikmµr J ′

m(αmµr)
)

Nmµ e−ikmµx−imϑ . (7.29b)
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7.5 Annular hard-walled duct modes in uniform mean flow

With uniform mean flow (see equation 2.52), the modal theory still applies. In view of applications,

we consider an annular duct of (scaled) inner radius h.

Consider the following linearized equations for small perturbations

(
iω + M

∂

∂x

)
p + ∇ ·v = 0, (7.30a)

(
iω + M

∂

∂x

)
v + ∇ p = 0, (7.30b)

with hard-wall boundary conditions. Eliminate v to obtain the convected wave equation

(
iω + M

∂

∂x

)2

p − ∇2 p = 0, (7.31)

Note, however, the possibility of convective incompressible pressureless disturbances of the form

v = F(r, θ) e−i ω
M

x , such that ∇ ·v = 0 and p ≡ 0.

Fully written out, equation (7.31) becomes

(
iω + M

∂

∂x

)2

p −
( ∂2

∂x2
+ ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϑ2

)
p = 0. (7.32)

The eigenvalue problem can now be solved, and we may expand the general solution in Fourier-Bessel

modes

p(x, r, θ) =
∞∑

m=−∞

∞∑

µ=1

(
Amµ e−ik+

mµx +Bmµ e−ik−
mµx

)
Umµ(r) e−imθ (7.33)

where the radial modes and radial and axial wave numbers satisfy

U ′′
mµ + 1

r
U ′

mµ +
(
α2

mµ − m2

r2

)
Umµ = 0 (7.34a)

α2
mµ = (ω − Mkmµ)

2 − k2
mµ (7.34b)

k±
mµ =

−ωM ±
√
ω2 − (1 − M2)α2

mµ

1 − M2
(7.34c)

and solution

Umµ(r) = Nmµ

(
cos(τmµ)Jm(αmµr)− sin(τmµ)Ym(αmµr)

)
. (7.35)

The corresponding phase and group velocities for cut-on modes are found to be

v±
ph = ω

k±
mµ

=
ω2M ± ω

√
ω2 − (1 − M2)α2

mµ

ω2 − α2
mµ

, (7.36a)

v±
g =

(dk±
mµ

dω

)−1

=
k±

mµ

ω − Mk±
mµ

+ M = ±
(1 − M2)

√
ω2 − (1 − M2)α2

mµ

ω ∓ M
√
ω2 − (1 − M2)α2

mµ

. (7.36b)
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while (v±
g − M)(v±

ph − M) = 1. Due to the mean flow, the axial modal wave numbers are shifted to

the left (M > 0), or right (M < 0), by a fixed amount of −ωM/(1 − M2), while the (dimensionless)

cut-off frequency is lowered from ω = αmµ for no flow to ω = αmµ

√
1 − M2 with flow. So with

flow more modes are possibly cut-on than without. Note that (for M > 0) the rightrunning modes

that become cut-on in this way (and only these) have a negative real part of their axial wave number.

Indeed, rightrunning modes with a frequency along the interval

αmµ

√
1 − M2 < ω < αmµ

have phase velocities that are opposite to their group velocities, the speed of information. The same

applies for left-running modes if M < 0. Since v+
g > 0 and v−

g < 0, this shows that it is not the sign

of kmµ but of its radical that corresponds with the direction of propagation [143]; c.f. equation (7.42).

Eigenvalues αmµ are determined via boundary condition U ′
mµ(1) = U ′

mµ(h) = 0

J ′
m(α)Y

′
m(αh)− J ′

m(αh)Y ′
m(α) = 0 (7.37)

The normalization is such that
∫ 1

h
U 2(r)r dr = 1 (c.f. [194]), so

Nmµ =
1
2

√
2παmµ

{
1 − m2/α2

mµ

J ′
m(αmµ)2 + Y ′

m(αmµ)2
−

1 − m2/α2
mµh2

J ′
m(αmµh)2 + Y ′

m(αmµh)2

} 1
2

(7.38)

and

τmµ = arctan
{ J ′

m(αmµ)

Y ′
m(αmµ)

}
. (7.39)

This implies the following choice of signs

cos τmµ = sign(Y ′
m(αmµ))

Y ′
m(αmµ)√

J ′
m(αmµ)2 + Y ′

m(αmµ)2
, (7.40a)

sin τmµ = sign(Y ′
m(αmµ))

J ′
m(αmµ)√

J ′
m(αmµ)2 + Y ′

m(αmµ)2
, (7.40b)

with the advantage that it reduces to the expected limit Nmµ Jm(αmµr) for h → 0. Other choices, for

example without the factor sign(Y ′
m), are also possible.

The modes are physically interesting because their shape remains the same. Mathematically, they are

interesting because they form a complete and orthonormal L2-basis for the solutions of the convected

wave equation (except for the pressureless convected perturbations):

∫ 2π

0

∫ 1

h

Umµ(r)Unν(r) eimθ e−inθ r drdθ = 2πδmnδµν (7.41)

It is convenient to introduce the Lorentz or Prandtl-Glauert type transformation (see 3.46 and section

9.1.1)

β =
√

1 − M2, x = βX, ω = β�, αmµ = �γmµ

k±
mµ = ±�σmµ −�M

β
, σmµ =

√
1 − γ 2

mµ,
(7.42)
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where σmµ is positive real or negative imaginary, then we have for pressure p and axial acoustic

velocity v

p =
∞∑

m=−∞

∞∑

µ=1

(
Amµ e−i�σmµX +Bmµ ei�σmµX

)
ei�M X Umµ(r) e−imθ (7.43a)

v =
∞∑

m=−∞

∞∑

µ=1

( σmµ − M

1 − Mσmµ

Amµ e−i�σmµX − σmµ + M

1 + Mσmµ

Bmµ ei�σmµX
)

ei�M X Umµ(r) e−imθ

(7.43b)

This includes the important case of the plane wave m = 0, µ = 1, with α01 = 0, k±
01 = ±ω/(1 ± M)

and U01 = (2/(1 − h2))1/2, such that

p(x, r, θ) =
[

A01 e− iωx
1+M +B01 e

iωx
1−M

]( 2

1 − h2

)1/2

, (7.44a)

v(x, r, θ) =
[

A01 e− iωx
1+M −B01 e

iωx
1−M

]( 2

1 − h2

)1/2

. (7.44b)

If we have at position x = 0 a given pressure and axial velocity profiles P(0, r, θ) and V (0, r, θ), we

can expand these profiles in the following Fourier-Bessel series

P(0, r, θ) =
∞∑

m=−∞

∞∑

µ=1

PmµUmµ(r) e−imθ , (7.45a)

V (0, r, θ) =
∞∑

m=−∞

∞∑

µ=1

VmµUmµ(r) e−imθ , (7.45b)

where

Pmµ = 1

2π

∫ 2π

0

∫ 1

h

P(0, r, θ)Umµ(r) eimθ r drdθ, (7.46a)

Vmµ = 1

2π

∫ 2π

0

∫ 1

h

V (0, r, θ)Umµ(r) eimθ r drdθ. (7.46b)

If these pressure and velocity profiles satisfy the above propagation model of sound in uniform mean

flow, the corresponding amplitudes Amµ and Bmµ are found from identifying

Pmµ = Amµ + Bmµ, (7.47a)

Vmµ = σmµ − M

1 − Mσmµ

Amµ − σmµ + M

1 + Mσmµ

Bmµ, (7.47b)

leading to

Amµ =
(1 − Mσmµ)(σmµ + M)Pmµ + (1 − M2σ 2

mµ)Vmµ

2σmµ(1 − M2)
, (7.48a)

Bmµ =
(1 + Mσmµ)(σmµ − M)Pmµ − (1 − M2σ 2

mµ)Vmµ

2σmµ(1 − M2)
. (7.48b)
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From the axial intensity in hard-walled flow duct

〈I x〉 = 1
2

Re
[
(p + Mu)(u∗ + Mp∗)

]
(7.49)

we obtain the axial power:

P = πβ4

∞∑

m=−∞

µ0∑

µ=1

σmµ

[ |Amµ|2
(1 − Mσmµ)

2
− |Bmµ|2
(1 + Mσmµ)

2

]
+

+ 2πβ4

∞∑

m=−∞

∞∑

µ=µ0+1

|σmµ|
(1 + M2|σmµ|2)2

·
[
Im(AmµB∗

mµ)(1 − M2|σmµ|2) − Re(AmµB∗
mµ)2M|σmµ|

]
(7.50)

where µ0 is the number of cut-on modes. Note the coupling between left- and right-running cut-off

modes.

7.6 Behaviour of soft-wall modes and mean flow

Consider a cylindrical duct with soft wall of specific impedance Z and uniform mean flow of Mach

number M . For this configuration the acoustic field allows again modes, similar to the no-flow situ-

ation, although their behaviour with respect to possible surface waves is more complicated [201].

We start with modes of the same form as for the hard wall case (equations 7.33 with 7.42, and 7.43a)

for pressure p and radial velocity v (we drop the exponentials with iωt and imθ)

p = e−i�σ X+i�M X Jm(�γ r), v = iβγ

1 − Mσ
e−i�σ X+i�M X J ′

m(�γ r),

where γ 2 + σ 2 = 1 and the sign of σ depends (in general) on the direction of propagation4 . From the

boundary condition (see equation 3.42)

iωZv =
(
iω + M ∂

∂x

)
p

we find the equation for reduced axial wave number σ for any given Z , m, and ω

(1 − Mσ )2 Jm(�γ )− iβ3 Zγ J ′
m(�γ ) = 0. (7.51)

A graphical description of their behaviour as a function of Im Z (from +∞ down to −∞) and fixed

Re Z is given in the series of figures (7.8). For large enough frequency, ω, the behaviour of the modes

can be classified as follows. When σ is near a hard-wall value, the mode described is really of acoustic

nature, extending radially through the whole duct. However, when σ is far enough away from a hard-

wall value, the imaginary part of �γ becomes significant. The complex Bessel function Jm(�γ r)

becomes exponentially decaying away from the wall, and the mode is radially restricted to the duct

wall region. In other words, it has become a surface wave, of two-dimensional nature, approximately

described by the theory of section 3.2.6 (eqn. 3.47).

The “egg” (figure 3.3), indicating the location of possible surface waves in the 2D limit, is drawn in

the figures by a dotted line. The 2D surface wave solutions are indicated by black lines. The behaviour

of the modes is to a certain extent similar to the no-flow situation (section 7.4.1, figures 7.5), although

the effect of the mean flow is that we have now 4 rather than 2 possible surface waves.

4Note that if σ = 1/M , i.e. if γ = ±iβ/M , we have to rescale the modal amplitude such that p = 0. In this case the

mode is a pressureless vorticity mode, comparable with (3.66).
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Figure 7.8 Trajectories of reduced wave number σmµ (m = 1, ω = 5) where M = 0.5, for Im(Z) varying from −∞
to ∞ and fixed Re(Z). The 2D surface wave solutions of eqn. (3.47) are included as black lines.
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For large Re Z , the modes remain near their hard-wall values. For lower values of Re Z the behaviour

becomes more irregular. The modes change position with a neighbour, and some become temporarily

a surface wave. The two hydrodynamic modes disappear to infinity for Im Z → −∞ like is described

in equation (3.48).

7.7 Source expansion

7.7.1 Modal amplitudes

A source at x = 0, defined by

p(x, r, ϑ)

∣∣∣
x=0

= p0(r, ϑ)

produces in a hard walled duct a sound field (7.15) with modal amplitudes given by (in x > 0)

Amµ = 1

2π

∫ 2π

0

∫ 1

0

p0(r, ϑ)Umµ(r) eimϑ r drdϑ (7.52a)

Bmµ = 0 (7.52b)

(use (7.16)), and the same in x < 0 but with A and B interchanged. Note that, similar to the evan-

escent waves of section 3.3, details of the source (averaged out for the lower modes in the process

of integration), only contribute to higher order modes and do not generate sound if these modes are

cut-off.

7.7.2 Rotating fan

Of practical interest, especially in aircraft noise reduction [237], is the following model of a propeller

or fan with B identical blades, equally spaced 1ϑ = 2π/B radians apart, rotating with angular speed

�. If at some time t = 0 at a fixed position x the field due to one blade is given by the shape function

q(ϑ, r), then from periodicity the total field is described by

p(r, ϑ, 0) = q(ϑ, r) + q(ϑ −1ϑ, r)+ · · · + q(ϑ − (B − 1)1ϑ, r)

=
B−1∑

k=0

q
(
ϑ − 2πk

B
, r

)
.

This function, periodic in ϑ with period 2π/B, may be expanded in a Fourier series:

p(ϑ, r, 0) =
∞∑

n=−∞
qn(r) e−inBϑ .

Since the field is associated to the rotor, it is a function of ϑ −�t . So at a time t

p(ϑ, r, t) =
B−1∑

k=0

q
(
ϑ −�t − 2πk

B
, r

)
=

∞∑

n=−∞
qn(r) einB�t−inBϑ (7.53)
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(with q−n = q∗
n because p is real). Evidently, the field is built up from harmonics of the blade passing

frequency B�. Note that each frequency ω = n B� is now linked to a circumferential periodicity

m = n B, and we jump with steps B through the modal m-spectrum. Since the plane wave (m = 0) is

generated with frequency ω = 0 it is acoustically not interesting, and we may ignore this component.

An interesting consequence for a rotor in a duct is the observation that it is not obvious if there is

(propagating) sound generated at all: the frequency must be higher than the cut-off frequency. For any

harmonic (n > 0) we have:

fm = m�

2π
>

j ′
m1c0

2πa
(7.54)

which is for the tip Mach number Mtip the condition

Mtip = a�

c0

>
j ′
m1

m
. (7.55)

Since the first zero of J ′
m is always (slightly) larger than m (Appendix D), it implies that the tip must

rotate supersonically (Mtip > 1) for the fan to produce sound.

Of course, in practice a ducted fan with subsonically rotating blades will not be entirely silent. For ex-

ample, ingested turbulence and the turbulent wake of the blades are not periodic and will therefore not

follow this cut-off reduction mechanism. On the other hand, if the perturbations resulting from blade

thickness and lift forces alone are dominating as in aircraft engines, the present result is significant,

and indeed the inlet fan noise level of many aircraft turbo fan engines is greatly enhanced at take off

by the inlet fan rotating supersonically (together with other effects leading to the so-called buzzsaw

noise ([226])).

7.7.3 Tyler and Sofrin rule for rotor-stator interaction

The most important noise source of an aircraft turbo fan engine at inlet side is the noise due to inter-

action between inlet rotor and neighbouring stator.

Behind the inlet rotor, or fan, a stator is positioned (figure 7.9) to compensate for the rotation, or swirl,

in the flow due to the rotor. The viscous and inviscid wakes from the rotor blades hit the stator vanes

which results into the generation of sound ([221]). A very simple but at the same time very important

and widely used device to reduce this sound is the “Tyler and Sofrin selection rule” ([226, 237]). It is

based on elegant manipulation of Fourier series, and amounts to nothing more than a clever choice of

the rotor blade and stator vane numbers, to link the first (few) harmonics of the sound to duct modes

that are cut-off and therefore do not propagate.

Consider the same rotor as above, with B identical blades, equally spaced 1ϑ = 2π/B radians apart,

rotating with angular speed �, and a stator with V identical vanes, equally spaced 1ϑ = 2π/V

radians apart. First, we observe that the field generated by rotor-stator interaction must have the time

dependence of the rotor, and is therefore built up from harmonics of the blade passing frequency B�.

Furthermore, it is periodic in ϑ , so it may be written as

p(r, ϑ, t) =
∞∑

n=−∞
Qn(r, ϑ) einB�t =

∞∑

n=−∞

∞∑

m=−∞
Qnm(r) einB�t−imϑ .

However, we can do better than that, because most of the m-components are just zero. The field is

periodic in ϑ with the stator periodicity 2π/V in such a way that when we travel with the rotor over
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16 = turbine exhaust duct
17 = hot jet nozzle
18 = far-field hot exit
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  9 = cold jet nozzle
10 = far-field cold exit

11 = low-pressure compressor
12 = high-pressure compressor
13 = combustion chamber
14 = high-pressure turbine
15 = low-pressure turbine

st
a
to

r

fan

radiation

gap 6

turbineexhaust duct
hot jet

radiation

inlet duct

by-pass duct cold jet

7

41 5

10

8

12 15

16
17

18

13 14

9

nacelle

acoustic lining

11

2
3

S.W. RienstracO

Figure 7.9 Sketch of high by-pass turbo fan engine. Note the fan (or inlet rotor), which produces with the stator (or

outlet guide vanes) the important rotor-stator interaction noise. This is to be attenuated by the acoustically

lined walls of the inlet and bypass duct.

an angle 1ϑ = 2π/V in a time step 1t = 1ϑ/� the field must be the same:

p(r, ϑ, t) =
∞∑

n=−∞

∞∑

m=−∞
Qnm(r) einB�(t−1t)−im(ϑ−1ϑ) .

This yields for any m the restriction: −in B�1t + im1ϑ = 2π ik, or

m = kV + n B (7.56)

where k is any integer, and n the harmonic of interest. By selecting B and V such that the lowest

|m| possible is high enough for the harmonic of interest to be cut-off, this component is effectively

absent for a long enough inlet duct. In practice, only the first harmonic is reduced in this way. A recent

development is that the second harmonic, which is usually cut-on, is reduced by selecting the mode

number m to be of opposite sign of n, which means: counter rotating with respect to the rotor. In this

case the rotor itself acts as a shield obstructing the spiralling modes to leave the duct ([221]).

In detail: for a cut-off n-th harmonic (we only have to consider positive n) we need

n B�

2π
<

j ′
m1c0

2πa
or n B Mtip < j ′

m1.

Since typically Mtip is slightly smaller than 1 and j ′
m1 is slightly larger than |m| we get the analogue

of evanescent wave condition k < |α| (section 3.3)

n B 6 |m| = |kV + n B|.
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The only values of kV for which this inequality is not satisfied automatically is in the interval −2n B <

kV < 0. If we make the step size V big enough so that we avoid this interval for k = −1, we avoid it

for any k. So we have finally the condition: V > 2n B.

Consider, as a realistic example, the following configuration of a rotor with B = 22 blades and a stator

with V = 55 vanes. The generated m-modes are for the first two harmonics:

for n = 1: m = · · · , −33, 22, 77, · · · ,
for n = 2: m = · · · , −11, 44, 99, · · · ,

which indeed corresponds to only cut-off modes of the first harmonic (m = 22 and larger) and a

counter rotating cut-on second harmonic (m = −11).

7.7.4 Point source in a lined flow duct

Consider a cylindrical duct of non-dimensional radius 1, a mean flow of subsonic Mach number M ,

and harmonic pressure and velocity perturbations p of non-dimensional angular frequency ω. The

pressure is excited by a point source at x0, and satisfies the equation

∇2 p −
(

iω + M
∂

∂x

)2

p = δ(x − x0), (7.57)

so p(x; x0) represents the Green’s function of the system. Note that we use the eiωt - convention. The

impedance boundary condition at r = 1 (3.42), becomes in terms of the pressure

(
iω + M

∂

∂x

)2

p + iωZ
∂p

∂r
= 0 at r = 1. (7.58)

For a hollow duct finiteness of p is assumed at r = 0. Finally, we adopt radiation conditions that says

that we only accept solutions that radiate away from the source position x0.

We represent the delta-function by a generalized Fourier series in ϑ and Fourier integral in x

δ(x − x0) = δ(r − r0)

r0

1

2π

∫ ∞

−∞
e−iκ(x−x0) dκ

1

2π

∞∑

m=−∞
e−im(ϑ−ϑ0) . (7.59)

where 0 < r0 < 1, and write accordingly

p(x, r, ϑ) =
∞∑

m=−∞
e−im(ϑ−ϑ0) pm(r, x) =

∞∑

m=−∞
e−im(ϑ−ϑ0)

∫ ∞

−∞
p̂m(r, κ) e−iκ(x−x0) dκ. (7.60)

Substitution of (7.59) and (7.60) in (7.57) yields for p̂m

∂2 p̂m

∂r2
+ 1

r

∂ p̂m

∂r
+

(
α2 − m2

r2

)
p̂m = δ(r − r0)

4π2r0

,

with

α2 = �2 − κ2, � = ω − κM.

This has solution

p̂m(r, κ) = A(κ)Jm(αr)+ 1
8π

H (r − r0)
(

Jm(αr0)Ym(αr)− Ym(αr0)Jm(αr)
)
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where use is made of the Wronskian

Jm(x)Y
′
m(x)− Ym(x)J

′
m(x) = 2

πx
. (7.61)

A prime denotes a derivative to the argument, x . A(κ) is to be determined from the boundary condi-

tions at r = 1, which is (assuming uniform convergence) per mode

i�2 p̂m + ωZ p̂′
m = 0 at r = 1.

A prime denotes a derivative to r . This yields

A = 1

8π

[
Ym(αr0)− i�2Ym(α)+ ωαZY ′

m(α)

i�2 Jm(α)+ ωαZ J ′
m(α)

Jm(αr0)

]
,

and thus

p̂m(r, κ) = Jm(αr<)
i�2Gm(r>, α)+ ωZ Hm(r>, α)

8πEm(κ)
,

where r> = max(r, r0), r< = min(r, r0) and

Em(κ) = i�2 Jm(α)+ ωαZ J ′
m(α)

Gm(r, α) = Jm(α)Ym(αr)− Ym(α)Jm(αr)

Hm(r, α) = α J ′
m(α)Ym(αr)− αY ′

m(α)Jm(αr)

By substituting the defining series we find that Gm and Hm are analytic functions of α2, while both

Em and Jm(αr<) can be written as αm times an analytic function of α2. As a result, p̂m(r, κ) is a

meromorphic5 function of κ . It has isolated poles κ = κ±
mµ, given by

Em(κ
±
mµ) = 0,

which is equivalent to (7.51). The final solution is found by Fourier back-transformation: close the

integration contour around the lower half plane for x > x0 to enclose the complex modal wave

numbers of the right-running modes, and the upper half plane for x < x0 to enclose the complex

modal wave numbers of the left-running modes. In figure 7.10 a typical location of the integration

contour with no-flow modes is shown. See also figures 7.5, 7.6 and 7.8.

We define

Qmµ = ±
[
(κmµ +�mµM)

(
1 − m2

α2
mµ

−
�4

mµ

(ωαmµZ)2

)
− 2i M�mµ

ωZ

]
,

where +/− relates to right/left-running modes. With the result

dEm

dκ

∣∣∣∣
κ=κmµ

= ±ωZ QmµJm(αmµ)

the integral is evaluated as a sum over the residues in the poles at κ = κ+
mµ for x > x0 and at κ−

mµ for

x < x0. From eigenvalue equation Em(κ
±
mµ) = 0 and the Wronskian (7.61) we obtain

i�2
mµGm(r>, αmµ)+ ωZ Hm(r>, αmµ) = − 2ωZ

π Jm(αmµ)
Jm(αmµr>).

5A meromorphic function is analytic on the complex plane except for isolated poles.
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Figure 7.10 Contour of integration in the κ-plane.

where αmµ = α(κmµ). We can skip the distinction between r> and r< and achieve the soft wall modal

expansion

pm(r, x) = − 1

2π i

∞∑

µ=1

Jm(αmµr)Jm(αmµr0)

Qmµ J 2
m(αmµ)

e−iκmµ(x−x0) (7.62)

where for x > x0 the sum pertains to the right-running waves, corresponding to the modal wave num-

bers κ+
mµ found in the lower complex half plane, and for x < x0 the left-running waves, corresponding

to κ−
mµ found in the upper complex half plane (see [201]).

Only if a mode from the upper half plane is to be interpreted as a right-running instability (their

existence is still an unresolved problem), its contribution is to be excluded from the set of modes for

x < x0 and included in the modes for x > x0. The form of the solution remains exactly the same, as

we do no more than deforming the integration contour into the upper half plane.

It may be noted that expression (7.62) is continuous in (x, r), except at (x0, r0) where the series

slowly diverges like a harmonic series. As may be expected from the symmetry of the configuration,

the clockwise and anti-clockwise rotating circumferential modes are equal, i.e. pm(r, x) = p−m(r, x).

Solution (7.62) is very general. It includes both the no-flow solution (take M = 0) and the hard

walled duct (take Z = ∞). Without mean flow the problem becomes symmetric in x and it may be

notationally convenient to write α±
mµ = αmµ, κ+

mµ = κmµ and κ−
mµ = −κmµ.

Finding all the eigenvalues κ±
mµ is evidently crucial for the evaluation of the series (7.62), in particular

when surface waves (Section 3.2.6) occur. An example of pm(x, r) is plotted in figure 7.11.

7.7.5 Point source in a duct wall

A problem, closely related to the previous one, is the field from a source v ·er = −δ(x − x0) in

the duct wall r = 1. Consider for simplicity a hard-walled duct without mean flow. We have for the
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Figure 7.11 Eigenvalues κ±
mµ and Re(pm), Im(pm ) and |pm | is plotted of the m = 5-th component of the point source

field in a lined flow duct with ω = 10, Z = 0.1 − 3i, x0 = 0, r0 = 0.7, M = 0.5 at r = 0.7 and θ = θ0.

Note the presence of 3 surface waves.

pressure

1

iω

∂p

∂r

∣∣∣∣
r=1

= 1

2π

∫ ∞

−∞
e−iκ(x−x0) dκ

1

2π

∞∑

m=−∞
e−im(ϑ−ϑ0) . (7.63)

We solve equation (7.3a) again via Fourier transformation in x , and Fourier series expansion in ϑ . We

obtain

p(x, r, ϑ) =
∞∑

m=−∞
e−im(ϑ−ϑ0)

∫ ∞

−∞
Am(κ)Jm(α(κ)r) e−iκ(x−x0) dκ (7.64)

where α(κ)2 = ω2 − κ2. From the Fourier transformed boundary condition (7.63) it follows that

αAm J ′
n(α) = −ω/4π2i , so

p(x, r, ϑ) = − ω

4π2i

∞∑

m=−∞
e−im(ϑ−ϑ0)

∫ ∞

−∞

Jm(αr)

α J ′
m(α)

e−iκ(x−x0) dκ.

The poles of the meromorphic6 integrand are found at κ = ±κmµ (we use the symmetry in x), and

since the waves must be outgoing the integration contour in the κ-plane must be located as in figure

7.10. Closing the contour via Im(κ) → −∞ for x > 0 and via Im(κ) → +∞ yields the solution, in

the form of a series over the residue-contributions7 in κ = ±κmµ. This yields the modal expansion

p(x, r, ϑ) = ω

2π

∞∑

m=−∞

∞∑

µ=1

Jm(αmµr) e−iκmµ|x−x0|−im(ϑ−ϑ0)

(1 − m2/α2
mµ)Jm(αmµ)κmµ

. (7.65)

The contribution of the m = 0, µ = 1 plane-wave mode is

1

2π
e−iω|x | .

6A meromorphic function is analytic on the complex plane except for isolated poles.
7Near κ = κmµ is J ′

m(α(κ)) ≃ −(κ − κmµ)κmµα
−1
mµ J ′′

m(αmµ).
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7.7.6 Vibrating duct wall

When, instead of a point, a finite part of the wall vibrates (e.g. [109]) as

r = 1 − η(x, ϑ) eiωt for − L 6 x 6 L (7.66)

then the solution may be found as follows. We write as a Fourier sum

η(x, ϑ) =
∞∑

m=−∞
e−imϑ ηm(x) =

∞∑

m=−∞
e−imϑ

∫ ∞

−∞
η̂m(κ) e−iκx dκ.

Similar to above we find the solution p(x, r, ϑ) as a formal Fourier integral, which can be rewritten,

by using result (7.65) and the Convolution Theorem (C.10) (p.231), as

p(x, r, ϑ) = iω2

∞∑

m=−∞

∞∑

µ=1

1

κmµ

α2
mµ

α2
mµ − m2

Jm(αmµr)

Jm(αmµ)
e−imϑ

∫ L

−L

ηm(x
′) e−iκmµ|x−x ′| dx ′ (7.67)

with the plane-wave contribution

iω

∫ L

−L

η0(x
′) e−iω|x−x ′| dx ′.

A naive interpretation of this formula might suggest the contradictory result that the field, built up from

hard-wall modes with vanishing r-derivative at the wall, does not satisfy the boundary condition of

the moving wall. This is not the case, however, because the infinite series is not uniformly converging

(at least, its radial derivative). Pointwise, the value at the wall is not equal to the limit to the wall,

while it is only the limit which is physically relevant.

Although in the source region no simple modes can be recognized, outside this region, i.e. for |x| > L ,

the remaining integral is just the Fourier transform times exponential, η̂m(±κmµ) exp(−κmµ|x|), and

the solution is again just a modal sum of right- or left-running modes.

7.8 Reflection and transmission at a discontinuity in diameter

One single modal representation is only possible in segments of a duct with constant properties (dia-

meter, wall impedance). When two segments of different properties are connected to each other we

can use a modal representation in each segment, but since the modes are different we have to reformu-

late the expansion of the incident field into an expansion of the transmitted field in the neighbouring

segment, using conditions of continuity of pressure and velocity. This is called: mode matching. Fur-

thermore, these continuity conditions cannot be satisfied with a transmission field only, and a part

of the incident field is reflected. Each mode is scattered into a modal spectrum of transmitted and

reflected modes.

Consider a duct with a discontinuity in diameter at x = 0 (figure 7.12): a radius a along x < 0 and a

radius b along x > 0, with (for definiteness) a > b. Because of circumferential symmetry there is no

scattering into other m-modes, so we will consider only a single m-mode.

The field pin, incident from x = −∞ and given by (see equation 7.14)

pin =
∞∑

µ=1

AmµUmµ(r) e−ikmµx−imϑ , (7.68a)
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r = a

r = b

Figure 7.12 Duct with discontinuous diameter.

is scattered at x = 0 into the reflected wave pref

pref =
∞∑

µ=1

BmµUmµ(r) eikmµx−imϑ, (7.68b)

Bmµ =
∞∑

ν=1

Rmµν Amν , or B = RA,

and into the transmitted wave ptr

ptr =
∞∑

µ=1

CmµÛmµ(r) e−iℓmµx−imϑ, (7.68c)

Ûmµ(r) = N̂mµ Jm(βmµr),

Cmµ =
∞∑

ν=1

Tmµν Amν , or C = T A.

Ûmµ(r) and N̂mµ are the obvious generalizations of Umµ(r) and Nmµ on the interval [0, b]. Suitable

conditions of convergence of the infinite series are assumed, while

αmµ = j ′
mµ/a, kmµ =

√
ω2 − α2

mµ, Im(kmµ) 6 0,

βmµ = j ′
mµ/b, ℓmµ =

√
ω2 − β2

mµ, Im(ℓmµ) 6 0.

The matrices R and T are introduced to use the fact that each incident mode reflects and transmits into

a modal spectrum. When acting on the incident field amplitude vector A, they produce the reflection

and transmission field amplitude vectors B and C. Therefore, they are called “reflection matrix” and

“transmission matrix”.

At the walls we have the boundary condition of vanishing normal velocity. At the interface x = 0, 0 6

r 6 b we have continuity of pressure pin + pref = ptr and corresponding axial velocity.

At the edges we have the so-called edge condition [140]: the energy integral of the field in a neigh-

bourhood of an edge must be finite (no source hidden in the edge). This condition is necessary in a



174 7 Duct acoustics

geometry with edges because the boundary conditions lose their meaning at an edge, whereas the dif-

ferential equation is not valid at the boundary. In the context of modal series expansions this condition

is related to the convergence rate of the series. A δ-function type of a spurious edge source generates a

divergent series expansion (to be interpreted as a generalized function; section C.2). Although its rôle

remains in the usual engineering practice somewhat in the background, the edge condition is certainly

important in the present problem.

Since the problem is linear it is sufficient to determine the scattered field of a single µ-mode. It then

follows that the continuity of pressure at the interface

∞∑

ν=1

(δνµ + Rmνµ)Umν =
∞∑

ν=1

TmνµÛmν (7.69)

yields, after multiplication with Ûmλ(r)r , integration from 0 to b, and using orthonormality, the fol-

lowing relation8 to express Tmλµ in the vector Rm·µ:

∞∑

ν=1

〈
Ûmλ ,Umν

〉
b
(δνµ + Rmνµ) = Tmλµ, (7.70)

where

〈
f ,g

〉
b

=
∫ b

0

f (r)g(r)r dr.

This integral may be evaluated by using equations (D.58) and (D.59). The continuity of axial velocity

at the interface

∞∑

ν=1

kmν(δνµ − Rmνµ)Umν =
∞∑

ν=1

ℓmνTmνµÛmν (7.71)

yields, after multiplication with Umλ(r)r , integration from 0 to a of the left hand side, and from 0 to

b of the right hand side, using px = 0 on b 6 r 6 a, the following relation expressing Rmλµ in the

vector Tm·µ:

kmλ(δλµ − Rmλµ) =
∞∑

ν=1

〈
Umλ ,Ûmν

〉
b
ℓmνTmνµ. (7.72)

Both equations (7.70) and (7.72) are valid for any λ and µ, so we can write in matrix notation

M(I + R) = T ,

k (I − R) = M⊤ℓ T ,
(7.73)

for identity matrix I , matrix M and its transpose M⊤, and diagonal matrices k and ℓ, given by

Mλν =
〈
Ûmλ ,Umν

〉
b
, kλν = δλνkmλ, ℓλν = δλνℓmλ.

So we have formally the solution

R = (k + M⊤ℓM)−1(k − M⊤ℓM) (7.74)

8 δi j = 1 if i = j, δi j = 0 if i 6= j .
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which can be evaluated by standard techniques for any sufficiently large truncated matrices.

A suitable choice of truncation [114, 128, 129, 198, 255], allowing for a certain balance between the

accuracy in x < 0 and in x > 0, is to include proportionally more terms in the wider duct: a truncation

of the series of (7.70) after, say, P terms and of (7.72) after Q terms, with P/a ≃ Q/b. This gives

truncated matrices MQ×P , M⊤
P×Q , kP×P , ℓQ×Q , so that we obtain RP×P and TQ×P .

It should be noted that if we take P/Q very much different from a/b, we may converge for P, Q → ∞
to another solution (7.74) than the physical one. This is not an artefact of the method: the solution is

indeed not unique, because we have not yet explicitly satisfied the edge condition. The behaviour near

the edge depends on the way we let P and Q tend to infinity, and the edge condition is satisfied if

their ratio remains: P/Q ≃ a/b.

7.8.1 The iris problem

When an abrupt contraction of the duct diameter is immediately followed by an expansion to the

previous diameter (an infinitely thin orifice plate), we call this an iris. In this case one might be

tempted to solve the problem directly by matching the modal expansions at either side of the iris

plate. This solution will, however, either not or very slowly converge to the correct (i.e. physical)

solution.

The above method of section 7.8, however, is well applicable to this problem too, if we consider the

iris as a duct (albeit of zero length) connecting the two main ducts at either side of the iris. Each

transition (from duct 1 to the iris, and from the iris to duct 2) is to be treated as above. Since the

matrices of each transition are similar, the final system of matrix equations may be further simplified

[198].

7.9 Reflection at an unflanged open end

The reflection and diffraction at and radiation from an open pipe end of a modal sound wave depends

on the various problem parameters like Helmholtz number ω, mode numbers m, µ and pipe wall

thickness. A canonical problem amenable to analysis is that of a hard-walled, cylindrical, semi-infinite

pipe of vanishing wall thickness. The exact solution (by means of the Wiener-Hopf technique) was

first found by Levine and Schwinger (for m = 0) in their celebrated paper [118]. Generalizations for

higher modes may be found in [250] and with uniform [194] or jet mean flow [151, 152].

Inside the pipe we have the incident mode with reflected field, given by p(x, r, ϑ) = pmµ(x, r) e−imϑ

where

pmµ(x, r) = Umµ(r) e−ikmµx +
∞∑

ν=1

RmµνUmν(r) eikmν x . (7.75)

Outside the pipe we have in the far field

pmµ(x, r) ≃ Dmµ(ξ)
e−iω̺

ω̺
(ω̺ → ∞), (7.76)

where x = ̺ cos ξ , r = ̺ sin ξ , and Dmµ(ξ) is called the directivity function, and |Dmµ(ξ)| is the

radiation pattern.
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The reflection matrix {Rmµν} and the directivity function are both described by complex integrals,

which have to be evaluated numerically. Some important properties are:

• At resonance ω = αmµ we have total reflection in itself, Rmµµ = −1, and no reflection in any other

mode, Rmµν = 0.

• Near resonance ω ∼ αmµ the modulus |Rmµν(ω)| behaves linearly from the left, and like a square

root from the right side; the behaviour of the phase arg(Rmµν(ω)) is similar but reversed: linearly

from the right and like a square root from the left.

• A reciprocity relation between the µ, ν and the ν, µ-coefficients:

kmνRmµν = kmµRmνµ.

• In the forward arc, 0 < ξ < 1
2
π , Dmµ(ξ) consists of lobes (maxima interlaced by zeros), while

D01(0) = 1
2

√
2 iω2 and Dmµ(0) = 0.

• In the rearward arc, 1
2
π 6 ξ < π , Dmµ(ξ) is free of zeros, and tends to zero for ξ → π if m > 1

and to a finite value if m = 0.

• If kmν is real and ν 6= µ, the zeros of Dmµ(ξ) are found at

ξ = arcsin(αmν/ω).

• If the mode is cut on, the main lobe is located at

ξmµ = arcsin(αmµ/ω).

• If ω → 0, the radiation pattern of the plane wave mµ = 01 becomes spherically shaped and

small like O(ω2), while the reflection coefficient becomes R011 ≃ − exp(−i 2δω), where δ =
0.6127. The dimensional distance δa is called the end correction, since x = δa is a fictitious point

just outside the pipe, at which the wave appears to reflect with p = 0. See also (6.95,5.44).

Based on the method presented in [194], plots of Rmµν and |Dmµ(ξ)| may be generated, as given in

figures 7.13 and 7.14.

Of the reflection coefficient we have plotted modulus |Rmµν(ω)| and phase φmµν = arg(Rmµν) as a

function of ω = 0 . . . 7., for m = 0 . . . 2 and µ, ν = 1, 2. Note that the resonance (cut-off) frequencies

are ω = 3.8317 and 7.0156 for m = 0, ω = 1.8412 and 5.3314 for m = 1, and ω = 3.0542 and

6.7061 for m = 2.

The radiation pattern is plotted, on dB-scale, of the first radial mode (µ = 1) for m = 0 and m = 1,

and ω = 2, 4, 6. For m = 0 the main lobe is at ξ01 = 0, while the zeros are found for ω = 4 at

ξ = 73.3◦, and for ω = 6 at ξ = 39.7◦. For m = 1 we have the main lobe at ξ11 = 67.0◦, 27.4◦, 17.9◦

for ω = 2, 4, 6. The zero is found at ξ = 62.7◦ for ω = 6.

Furthermore, the trend is clear that for higher frequencies the refraction effects become smaller, and

the sound radiates more and more like rays [29]. It is instructive to compare the wave front velocity of

a mode (the sound speed, dimensionless 1) and the axial phase velocity vph (7.19). As the mode spirals

through the duct, the wave front makes an angle ξmµ with the x-axis such that cos(ξmµ) = 1/vph =
kmµ/ω. Indeed,

ξmµ = arccos(kmµ/ω) = arcsin(αmµ/ω)

is the angle at which the mode radiates out of the open end, i.e. the angle of the main lobe.
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Figure 7.13 Modulus and phase of reflection coefficients Rmµν for m = 0 . . . 2,µ, ν = 1, 2, as a function of ω = 0 . . . 7.
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Figure 7.14 Radiation pattern 20 log10 |Dmµ| + 71.7 for mµ = 01,= 11 and ω = 2, 4, 6.

Exercises

a) Consider a hard-walled duct of radius a = 0.1 m with an acoustic medium with c0 = 340 m/s. A

harmonic source with frequency f = 500 Hz is positioned at x = 0 half-way the radius. A microphone

is to be placed an axial distance x = D away from the source, such that the plane wave is detected at

least 20 dB louder than the other modes.

– What is the cut-off frequency ?

– Assuming that all excited modes have about the same initial amplitude, ignoring details like r -variation

of higher-order modes: what is the necessary distance D?

– What is D for frequency f tending to zero ?

b) Investigate the behaviour of kmµ (equation 7.26) for ω → ∞. Find analytical approximate expressions

of the surface waves.

c) Find in a similar way as for equation (7.65), by Fourier transformation to x , the field of a harmonic point

source inside a hard-walled infinite duct. Verify this by an alternative approach based on representation

(D.57).

d) Consider a cylindrical duct of radius R, with an acoustic medium of density ρ0 and soundspeed c0, and

lined with sound absorbing material of uniform impedance Z . Inside the duct we have a sound field of

angular frequencyω and circumferential periodicity m. For definiteness the sound field may be described

in complex form as a linear combination of the modes Jm(αmµr) eiωt−imθ∓ikmµx , µ = 1 . . . .

We define the optimal impedance Zopt as the impedance that maximises the modal attenuation, i.e.

| Im(kmµ)|, of the least attenuated mode (Cremer’s optimum). You may assume that this optimum is

found at one of the values of Z where two modes coincide (see also figure 7.7).

– Derive the eigenvalue equation F(α, Z) = 0 for radial wave number αmµ. This is a dimensional

version of equation (7.24). Note that coinciding solutions are found where F(α, Z) and ∂
∂α

F(α, Z)

vanish simultaneously.

– Show that Zopt takes the form

Zopt = ρ0c0

(ωR

c0

)
Km ,

where Km is a fixed number to be determined numerically.

– Find numerically Km for m = 0, 1, 2.
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Mathematical modelling is the art of sorting out the whole spectrum of effects that play a role in a

problem, and then making a selection by including what is relevant and excluding what is too small.

This selection is what we call a “model” or “theory”. Models and theories, applicable in a certain

situation, are not “isolated islands of knowledge” provided with a logical flag, labelling it “valid” or

“invalid”. A model is never unique, because it depends on the type, quality and accuracy of answers

we are aiming for, and of course the means (time, money, numerical power, mathematical skills) that

we have available.

Normally, when the problem is rich enough, this spectrum of effects does not simply consist of two

classes “important” and “unimportant”, but is a smoothly distributed hierarchy varying from “essen-

tial” effects via “relevant” and “rather relevant” to “unimportant” and “absolutely irrelevant” effects.

As a result, in practically any model we select there will be effects that are small but not small enough

to be excluded. We can ignore this fact, and just assume that all effects that constitute our model are

equally important. This is the usual approach when the problem is simple enough for analysis or a

brute force numerical simulation.

There are situations, however, where it could be wise to utilise the smallness of these small but im-

portant effects in such a way that we simplify the problem without reducing the quality of the model.

Usually, an otherwise intractable problem becomes solvable and we gain great insight in the problem.

Perturbation methods do this in a systematic manner by using the sharp fillet knife of mathematics in

general, and asymptotic analysis in particular. From this perspective, perturbation methods are ways

of modelling with other means and are therefore much more important for the understanding and

analysis of practical problems than they’re usually credited with. David Crighton [41] called “Asymp-

totics - an indispensable complement to thought, computation and experiment in applied mathematical

modelling”.

Examples are numerous: simplified geometries reducing the spatial dimension, small amplitudes al-

lowing linearization, low velocities and long time scales allowing incompressible description, small

relative viscosity allowing inviscid models, zero or infinite lengths rather than finite lengths, etc.

The question is: how can we use this gradual transition between models of different level. Of course,

when a certain aspect or effect, previously absent from our model, is included in our model, the change

is abrupt and usually the corresponding equations are more complex and more difficult to solve. This

is, however, only true if we are merely interested in exact or numerically “exact” solutions. But an

exact solution of an approximate model is not better than an approximate solution of an exact model.

So there is absolutely no reason to demand the solution to be more exact than the corresponding model.

If we accept approximate solutions, based on the inherent small or large modelling parameters, we do

have the possibilities to gradually increase the complexity of a model, and study small but significant

effects in the most efficient way.

The methods utilizing systematically this approach are called “perturbations methods”. Usually, a

distinction is made between regular and singular perturbations. A (loose definition of a) regular per-
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turbation is where the solution of the approximate problem is everywhere close to the solution of the

unperturbed problem.

In acoustics we have as typical examples of modelling hierarchies: wave propagation in a uniform

medium or with simple boundaries being considerably simpler than in a non-uniform medium or

with complicated boundaries. For a uniform medium and simple boundary conditions, many exact

analytical results are available. For an arbitrary non-uniform medium or complex boundary conditions,

we usually have to resort to numerical methods. Analytical approximations and perturbation methods

come into play for cases in between where the problem differs only a little from one which allows full

analytical treatment.

We will consider here three methods relevant in acoustical problems. The first is the problem of Web-

ster’s horn, an example of a regular perturbation method [130] known as method of slow variation,

since the typical axial length scale is much greater than the transverse length scale. The others are ex-

amples of singular perturbation methods. The method of multiple scales (related to the WKB method)

describes problems in which in the problem several length scales act in the same direction, for ex-

ample a wave propagating through a slowly varying environment. The method of matched asymptotic

expansions is used to analyse problems in which several approximations, valid in spatially distinct

regions, are necessary.

In order to quantify the used small effect in the model, we will always introduce a small positive

dimensionless parameter ε. Its physical meaning depends on the problem. It will usually stem from a

characteristic amplitude, wave number, or medium gradient.

8.1 Webster’s horn equation

Consider the following problem of low frequency sound waves propagating in a slowly varying duct

or horn [116, 203]. The typical length scale of duct variation is assumed to be much larger than

a diameter, and of the same order of magnitude as the sound wave length. We introduce the ratio

between a typical diameter and this length scale as the small parameter ε, and write for the duct

surface and wave number k

r = R(X, θ), X = εx, k = εκ. (8.1)

A(X)
ℓ

R(X, θ)

r

θ

nn⊥

X = εx

Figure 8.1 Geometry of Webster horn.

By writing R as a function of slow variable

X , rather than x , we have made our formal

assumption of slow variation explicit in a

convenient and simple way, since

∂R

∂x
= ε

∂R

∂X
= O(ε).

The crucial step will now be the assump-

tion that the propagating sound wave is

only affected by the geometric variation in-

duced by R. Any initial or entrance effects are absent or have disappeared. As a result the acoustic

field p is a function of X , rather than x , and its axial gradient scales on ε, as ∂
∂x

p = O(ε).
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It is convenient to introduce the following function S and its gradients

S = r − R(X, θ), (8.2)

∇S = εSX ex + Sr er + Sθ

r
eθ = −εRX ex + er − Rθ

r
eθ , (8.3)

∇⊥S = Sr er + Sθ

r
eθ = er − Rθ

r
eθ . (8.4)

At the duct surface S = 0 the gradient ∇S is a vector normal to the surface (see section A.3), while

the transverse gradient ∇⊥S, directed in the plane of a cross section X = const., is normal to the duct

circumference S(X = c, r, θ) = 0.

Inside the duct we have the reduced wave equation (Helmholtz equation)

ε2 pX X + ∇2
⊥ p + ε2κ2 p = 0, (8.5)

at the solid wall the boundary condition of vanishing normal velocity

∇ p ·∇S = ε2 pX SX + ∇⊥ p ·∇⊥S = 0 at S = 0. (8.6)

This problem is too difficult in general, so we try to utilize in a systematic manner the small parameter

ε. Since the perturbation terms are O(ε2), we assume the asymptotic expansion

p(X, r, θ; ε) = p0(X, r, θ)+ ε2 p1(X, r, θ)+ O(ε4).

After substitution in equation (8.5) and boundary condition (8.6), further expansion in powers of ε2

and equating like powers of ε, we obtain to leading order a Laplace equation in (r, θ)

∇2
⊥ p0 = 0 with ∇⊥ p0 ·∇⊥S = 0 at S = 0.

An obvious solution is p0 ≡ 0. Since the solution of the Laplace equation with boundary conditions

in the normal derivative are unique up to a constant (here: a function of X ), we have

p0 = p0(X).

To obtain an equation for p0 in X we continue with the O(ε2)-equation and corresponding boundary

condition

∇2
⊥ p1 + p0 X X + κ2 p0 = 0, ∇⊥ p1 ·∇⊥S = − p0 X SX . (8.7)

The boundary condition can be rewritten as

∇⊥ p1 ·n⊥ = p0 X RX

|∇⊥S| = p0 X R RX√
R2 + R2

θ

where n⊥ = ∇⊥S/|∇⊥S| is the transverse unit normal vector. By integrating equation (8.7) over a

cross section A of area A(X), using Gauss’ theorem, and noting that A =
∫ 2π

0
1
2

R2 dθ , and that a

circumferential line element is given by dℓ = (R2 + R2
θ )

1/2dθ , we obtain

∫∫

A

∇2
⊥ p1 + p0 X X + κ2 p0 dσ =

∫

∂A

∇⊥ p1 ·n⊥ dℓ+ A( p0 X X + κ2 p0) =

p0 X

2π∫

0

R RX dθ + A( p0 X X + κ2 p0) = AX p0 X + A( p0 X X + κ2 p0) = 0.
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Finally, we have obtained for the leading order field p0 the Webster horn equation [12, 56, 146, 178,

217, 218, 249], which is, for convenience written in the original variables x and k, given by

1

A

d

dx

(
A

d

dx
p0

)
+ k2 p0 = 0. (8.8)

By introducing A = D2 and φ = Dp0, the equation may be transformed into

φ′′ +
(

k2 − D′′

D

)
φ = 0. (8.9)

This can be solved analytically for certain families of cross sectional shapes A. For example, the term

D′′/D becomes a constant if

D = a emx +b e−mx ,

(parameterized by a, b, and m), and the equation (8.8) simplifies to

φ′′ + (k2 − m2)φ = 0

which can be solved by elementary methods. In the special case m → 0 such that a = 1
2
(A0 + A1/m)

and b = 1
2
(A0 − A1/m), the shape reduces to the conical horn A = (A0 + A1x)2. For b = 0 we have

the exponential horn, and if b = a the catenoidal horn.

The parameter m is clearly most important since it determines whether the wave is propagating (m <

k) or cut-off (m > k).

8.2 Multiple scales

Introduction

By means of the method of multiple scales we will consider problems typically of waves propagating

in a slowly varying but otherwise infinite medium (ray acoustics), or waves propagating in a slowly

varying duct.

In both cases there is a small parameter in the problem which is the corner stone of the approximation.

This small parameter is the ratio between a typical wave length and the length scale over which the

medium or duct varies considerably (say, order 1).

Intuitively, it is clear that over a short distance (a few wave lengths) the wave only sees a constant me-

dium or geometry, and will propagate approximately as in the constant case, but over larger distances

it will somehow have to change its shape in accordance with its new environment.

A technique, utilizing this difference between small scale and large scale behaviour is the method of

multiple scales ([158, 13]). As with most approximation methods, this method has grown out of prac-

tice, and works well for certain types of problems. Typically, the multiple scale method is applicable

to problems with on the one hand a certain global quantity (energy, power) which is conserved or

almost conserved and controls the amplitude, and on the other hand two rapidly interacting quantities

(kinetic and potential energy) controlling the phase.
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An illustrative example

We will illustrate the method by considering a damped harmonic oscillator

d2 y

dt2
+ 2ε

dy

dt
+ y = 0 (t > 0), y(0) = 0,

dy(0)

dt
= 1 (8.10)

with 0 < ε ≪ 1. The exact solution is readily found to be

y(t) = sin(
√

1 − ε2 t) e−εt /
√

1 − ε2 (8.11)

A naive approximation for small ε and fixed t would give

y(t) = sin t − εt sin t + O(ε2) (8.12)

which appears to be not a good approximation for large t for the following reasons:

1) if t = O(ε−1) the second term is of equal importance as the first term and nothing is left over of

the slow exponential decay;

2) if t = O(ε−2) the phase has an error of O(1) giving an approximation of which even the sign may

be in error.

In the following we shall demonstrate that this type of error occurs also if we construct a straight-

forward approximate solution directly from equation (8.10). However, knowing the character of the

error, we may then try to avoid them. Suppose we can expand

y(t; ε) = y0(t)+ εy1(t)+ ε2 y2(t)+ · · · . (8.13)

Substitute in (8.10) and collect equal powers of ε:

O(ε0) : d2 y0

dt2
+ y0 = 0 with y0(0) = 0,

dy0(0)

dt
= 1,

O(ε1) : d2 y1

dt2
+ y1 = −2

dy0

dt
with y1(0) = 0,

dy1(0)

dt
= 0,

then

y0(t) = sin t, y1(t) = −t sin t, etc.

Indeed, the straightforward, Poincaré type, expansion (8.13) that is generated breaks down for large

t , when εt > O(1). As is seen from the structure of the equations for yn, the quantity yn is excited

(by the “source”-terms −2dyn−1/dt) in its eigenfrequency, resulting in resonance. The algebraically

growing terms of the type tn sin t and tn cos t that are generated are called in this context: secular1

terms.

Apart from being of limited validity, the expansion reveals nothing of the real structure of the solution:

a slowly decaying amplitude and a frequency slightly different from 1. For certain classes of problems

it is therefore advantageous to incorporate this structure explicitly in the approximation.

Introduce the slow time scale

T = εt (8.14)

1From astronomical applications where these terms occurred for the first time in this type of perturbation series: secular

≈ occurring once in a century; saeculum = generation, about 100 years.
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and identify the solution y with a suitably chosen other function Y that depends on both variables t

and T :

y(t; ε) = Y (t, T ; ε). (8.15)

The underlying idea is the following. There are, of course, infinitely many functions Y (t, T ; ε) that

are equal to y(t, ε) along the line T = εt in (t, T )-space. So we have now some freedom to prescribe

additional conditions. With the unwelcome appearance of secular terms in mind it is natural to think

of conditions, chosen such that no secular terms occur when we construct an approximation.

Since the time derivatives of y turn into partial derivatives of Y

dy

dt
= ∂Y

∂t
+ ε

∂Y

∂T
, (8.16)

equation (8.10) becomes for Y

∂2Y

∂t2
+ Y + 2ε

(∂Y

∂t
+ ∂2Y

∂t∂T

)
+ ε2

(∂2Y

∂T 2
+ 2

∂Y

∂T

)
= 0. (8.17)

Assume the expansion

Y (t, T ; ε) = Y0(t, T )+ εY1(t, T )+ ε2Y2(t, T )+ · · · (8.18)

and substitute this into equation (8.17) to obtain to leading orders

∂2Y0

∂t2
+ Y0 = 0,

∂2Y1

∂t2
+ Y1 = −2

∂Y0

∂t
− 2

∂2Y0

∂t∂T
,

with initial conditions

Y0(0, 0) = 0,
∂

∂t
Y0(0, 0) = 1,

Y1(0, 0) = 0,
∂

∂t
Y1(0, 0) = − ∂

∂T
Y0(0, 0).

The solution for Y0 is easily found to be

Y0(t, T ) = A0(T ) sin t with A0(0) = 1, (8.19)

which gives a right-hand side for the Y1-equation of

−2
(

A0 + ∂A0

∂T

)
cos t.

No secular terms occur (no resonance between Y1 and Y0) if this term vanishes:

A0 + ∂A0

∂T
= 0 −→ A0 = e−T . (8.20)

Note (this is typical), that we determine Y0 fully only on the level of Y1, however, without having to

solve Y1 itself.
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The present approach is by and large the multiple scale technique in its simplest form. Variations on

this theme are sometimes necessary. For example, we have not completely got rid of secular terms. On

a longer time scale (t = O(ε−2)) we have in Y2 again resonance because of the “source”: e−T sin t ,

yielding terms O(ε2t). We see that a second time scale T2 = ε2t is necessary.

Sometimes, the occurrence of higher order time scales is really an artefact of the fast variable being

slowly varying due to external effects, like a slowly varying problem parameter. In this case the fast

variable is to be strained locally by a suitable strain function in the following way

t̃ = 1

ε

∫ εt

ω(τ ; ε) dτ. (8.21)

(The need for the 1/ε-factor is immediately clear if we observe that t̃ = ε−1ωεt = ωt for a constant

ω = O(1).) For linear wave-type problems we may anticipate the structure of the solution and assume

the WKB hypothesis (see [13, 80])

y(t; ε) = A(T ; ε) eiε−1
∫ T

0 ω(τ ;ε) dτ . (8.22)

We have

∂y

∂t
=

(
iωA + ε

∂A

∂T

)
eiε−1

∫ T
0 ω dτ

∂2y

∂t2
=

(
−ω2 A + 2iεω

∂A

∂T
+ iε

∂ω

∂T
A + ε2 ∂

2 A

∂T 2

)
eiε−1

∫ T
0 ω dτ

so that substitution in (8.10) and suppressing the exponential factor yields

(1 − ω2)A + iε
(

2ω
∂A

∂T
+ ∂ω

∂T
A + 2ωA

)
+ ε2

(∂2 A

∂T 2
+ 2

∂A

∂T

)
= 0.

Note that the secular terms are now not explicitly suppressed. The necessary additional condition is

here that the solution of the present type exists (assumption 8.22), and that each higher order correction

is no more secular than its predecessor. With some luck and ingenuity this is just sufficient to determine

A and ω. In general, this is indeed not completely straightforward. So much freedom may be left that

ambiguities can result.

Finally, the solution is found as the following expansion

A(T ; ε) = A0(T )+ εA1(T )+ ε2 A2(T )+ · · ·
ω(T ; ε) = ω0(T )+ ε2ω2(T )+ · · · .

(8.23)

Note that ω1 may be set to zero since the factor exp(i
∫ T

0
ω1(τ ) dτ) may be incorporated in A. Substi-

tute and collect equal powers of ε:

O(ε0) : (1 − ω2
0)A0 = 0 → ω0 = 1,

O(ε1) : ∂A0

∂T
+ A0 = 0 → A0 = e−T ,

O(ε2) : 2i
(∂A1

∂T
+ A1

)
= (1 + 2ω2) e−T → ω2 = − 1

2
, A1 = 0.

The solution that emerges is indeed consistent with the exact solution.
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8.3 Helmholtz resonator with non-linear dissipation

An interesting application of the multiple scale technique is the Helmholtz resonator, derived in equa-

tion (5.41). In this way we will be able to investigate the small non-linear terms that will be seen to

represent a small damping. See also [224].

We start with equation (5.41)

ℓV

c2
0 Sn

d2 p′
in

dt2
+ V 2

2ρ0c4
0 S2

n

dp′
in

dt

∣∣∣∣
dp′

in

dt

∣∣∣∣ + RV

ρ0c2
0 Sn

dp′
in

dt
+ p′

in = p′
ex. (5.41)

where we wrote for simplicity ℓ := ℓ+ 2δ.

For a proper analysis it is most clarifying to rewrite the equation into non-dimensional variables. For

this we need an inherent timescale and pressure. For vanishing amplitudes and negligible dissipa-

tion the equation describes a harmonic oscillator, so the reciprocal of its angular frequency ω0 =
(c2

0 Sn/ℓV )1/2 is the obvious timescale of the problem. By dividing the nonlinear damping term by the

acceleration term we find the pressure level 2ρ0c2
0ℓSn/V at which the nonlinear damping would be

just as large as the other terms. So for a pressure that is a small fraction ε of this level we have a prob-

lem with only little nonlinear damping. In addition we assume that the linear damping is small and (to

make the problem interesting) of the same order of magnitude as the nonlinear damping. Anticipating

the fact that we will consider (in the forced problem) the external pressure exciting near resonance,

the driving amplitude p′
ex will be an order smaller than p′

in.

In order to make all this explicit we introduce a small parameter ε (selected, as we just explained, via

the external forcing amplitude), and make dimensionless

τ = ω0t, ω0 =
(

c2
0 Sn

ℓV

) 1
2

, R = ερ0c0

(
ℓSn

V

) 1
2

r,

p′
in = 2ερ0c2

0

ℓSn

V
y, p′

ex = 2ε2ρ0c2
0

ℓSn

V
F, where 0 < ε ≪ 1,

(8.24)

to obtain

d2 y

dτ 2
+ ε

dy

dτ

∣∣∣∣
dy

dτ

∣∣∣∣ + εr
dy

dτ
+ y = εF. (8.25)

The initial value problem

We will start with the response to a stepwise change of external pressure, so we assume F = 0, and

prescribe a y = 1 at t = 0. This yields the problem

d2 y

dτ 2
+ ε

dy

dτ

∣∣∣∣
dy

dτ

∣∣∣∣ + εr
dy

dτ
+ y = 0, with y(0) = 1,

dy(0)

dτ
= 0. (8.26)

By comparing the acceleration y′′ with the damping ε(y′|y′| + r y′) it may be inferred that on a times-

cale ετ the influence of the damping is O(1). So we conjecture a slow timescale ετ , and split up the

time dependence in two by introducing the slow timescale T and the dependent variable Y

T = ετ, y(τ ; ε) = Y (t, T ; ε), dy

dτ
= ∂Y

∂τ
+ ε

∂Y

∂T
,
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and obtain for equation (8.26)

∂2Y

∂τ 2
+ Y + ε

(
2
∂2Y

∂τ∂T
+ ∂Y

∂τ

∣∣∣∣
∂Y

∂τ

∣∣∣∣ + r
∂Y

∂τ

)
+ O(ε2) = 0

Y (0, 0; ε) = 1,
( ∂
∂τ

+ ε
∂

∂T

)
Y (0, 0; ε) = 0.

(8.27)

The error of O(ε2) results from the approximation ∂
∂τ

Y + ε ∂
∂T

Y ≃ ∂
∂τ

Y , and is of course only valid

outside a small neighbourhood of the points where ∂
∂τ

Y = 0. We assume the regular expansion

Y (t, T ; ε) = Y0(t, T )+ εY1(t, T )+ O(ε2)

and find for the leading order

∂2Y0

∂τ 2
+ Y0 = 0, with Y0(0, 0) = 1,

∂

∂τ
Y0(0, 0) = 0 (8.28)

with solution

Y0 = A0(T ) cos(τ −20(T )), where A0(0) = 1, 20(0) = 0.

For the first order we have the equation

∂2Y1

∂τ 2
+ Y1 = −2

∂2Y0

∂τ∂T
− ∂Y0

∂τ

∣∣∣∣
∂Y0

∂τ

∣∣∣∣ − r
∂Y0

∂τ
= 2

dA0

dT
sin(τ −20)

− 2A0

d20

dT
cos(τ −20)+ A2

0 sin(τ −20)| sin(τ −20)| + r A0 sin(τ −20) (8.29)

with corresponding initial conditions (they are unimportant for the leading order result). The secular

terms are suppressed if the first harmonics (cos and sin) of the right-hand side cancel. For this we use

the Fourier series expansion (section C.3, eq. C.45e)

sin τ | sin τ | = − 8

π

∞∑

n=0

sin(2n + 1)τ

(2n − 1)(2n + 1)(2n + 3)
(8.30)

and we obtain the equations

2
dA0

dT
+ 8

3π
A2

0 + r A0 = 0 and
d20

dT
= 0 (8.31)

with solution 20 = 0 and

A0(T ) =
1
2
r

(
4

3π
+ 1

2
r
)

e
1
2 rT − 4

3π

(8.32)

With little linear dissipation (r small) this reduces to an algebraic decay, viz. A0(T ) = (1 + 4
3π

T )−1,

and with little nonlinear dissipation (r large) to the exponential decay A0(T ) = e− 1
2 rT . All together

we have

pin ≃ 2ερ0c2
0

ℓSn

V

1
2
r cos τ

(
4

3π
+ 1

2
r
)

e
1
2

rετ − 4
3π

, with τ =
(

c2
0 Sn

ℓV

) 1
2

t. (8.33)

Comparison with a numerically obtained “exact” solution shows that this approximation happens to

be quite good.
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The response to harmonic forcing

Suppose we excite the Helmholtz resonator harmonically by an external forcing p′
ex = C cos(ωt) of

frequency ω. In the scaled variables τ and F this becomes

εF = εF0 cos(�τ), with ω = �ω0.

So we have the forced oscillator

d2 y

dτ 2
+ ε

dy

dτ

∣∣∣∣
dy

dτ

∣∣∣∣ + εr
dy

dτ
+ y = εF0 cos(�τ) (8.34)

where we don’t care about initial conditions, because we are only interested in the stationary state.

When we stay away from resonance conditions, in other words when 1 −�2 is not small, the solution

is relatively simple. The internal pressure follows the external excitation both in amplitude and in

time dependence. The nonlinear terms hardly play a role, because the driving amplitude is small. So

to leading order in ε we have the solution

y(τ ) = εF0

(1 −�2) cos�τ + εr� sin�τ

(1 −�2)2 + ε2r2�2
= A cos(�τ − θ),

A = εF0√
(1 −�2)2 + ε2r2�2

, tan θ = εr�

1 −�2
.

(8.35)

We see that near resonance this solution is not valid anymore. When 1 − �2 = O(ε), amplitude A

rises to levels of O(1), and the assumption that the nonlinear damping is negligible is not correct. At

the same time, it should be noticed that this corresponds with the most important situations (with the

most achieved damping). So it is worthwhile to analyse this problem in more detail. As the physics of

the problem essentially change when �2 = 1 + O(ε), we assume

� = 1 + ε1. (8.36)

To facilitate the analysis we remove the ε-dependence from the driving force, so we make again a

slight shift in the time coordinate and introduce

τ̃ = �τ (8.37)

to obtain

�2 d2 y

dτ̃ 2
+ ε�2 dy

dτ̃

∣∣∣∣
dy

dτ̃

∣∣∣∣ + ε�r
dy

dτ̃
+ y = εF0 cos(τ̃ ) (8.38)

To leading order this becomes

(1 + 2ε1)
d2 y

dτ̃ 2
+ ε

dy

dτ̃

∣∣∣∣
dy

dτ̃

∣∣∣∣ + εr
dy

dτ̃
+ y = εF0 cos(τ̃ ) (8.39)

When we substitute the assumed expansion y(τ̃ ; ε) = y0(τ̃ ) + εy1(τ̃ )+ . . . , and collect like powers

of ε, we find for y0

d2 y0

dτ̃ 2
+ y0 = 0 (8.40)
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with general solution

y0(τ̃ ) = A0 cos(τ̃ − θ0). (8.41)

Although y0 is the result of driving force F , we don’t have any information yet so we can’t determine

the integration constants A0 and θ0 at this level. Therefore we continue with the next order y1.

d2 y1

dτ̃ 2
+ y1 = F0 cos(τ̃ )− 21

d2 y0

dτ̃ 2
− dy0

dτ̃

∣∣∣∣
dy0

dτ̃

∣∣∣∣ − r
dy0

dτ̃
(8.42)

= F0 cos(τ̃ )+ 21A0 cos(τ̃ − θ0)+ A0|A0| sin(τ̃ − θ0)
∣∣sin(τ̃ − θ0)

∣∣ + r A0 sin(τ̃ − θ0).

From the argument that we are only interested in the stationary state it follows that no resonant ex-

citation is allowed in the right-hand-side of the equation for y1. This is effectively very similar to

the condition of absent secular terms of the previous initial value problem. So we can use the same

techniques to suppress the cos- and sin-terms, and use equation (8.30) to obtain

F0 cos θ0 = −21A0, F0 sin θ0 =
(

8
3π

|A0| + r
)

A0 (8.43)

with solution

[(
8

3π
|A0| + r

)2 + 412
]
A2

0 = F2
0 , tan θ0 = −

8
3π

|A0| + r

21
. (8.44)

This equation has several solutions, and it may not be immediately clear which is the correct one. To

solve A0 = A0(1) is difficult, but it is easy to write 12 as a function of A0:

12 = 1

4

[
F2

0

A2
0

−
(

8
3π

|A0| + r
)2

]
.

Since 12 > 0 we see immediately that two solutions exists only for a finite interval in A0, these two

are ± symmetric (we only need to consider one), while 1 → ±∞ only when A0 → 0. In particular,

A0 ≃ F0

2|1| , tan θ0 ≃ − r

21
or θ0 ≃ − r

21
+ nπ,

which is in exact agreement with the asymptotic behaviour for � = 1 + ε1, 1 large, of (8.35). In

fact, by tracing the solution parametrically as a function of 1, we can see that if we start with θ0 = 0

for 1 → −∞, we end with θ0 = π for 1 → ∞. See figure 8.2 for an example.
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Figure 8.2 Solutions of amplitude A0 and phase θ0 as a function of 1, for r = 1 and F0 = 1. See (8.44)
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8.4 Slowly varying ducts

Consider a hard-walled circular cylindrical duct with a slowly varying diameter (c.f. [199, 197, 206,

159, 34, 202, 169],), described in polar coordinates (x, r, θ) as

r = a(εx) (8.45)

with ε a dimensionless small parameter. In this duct we have an acoustic medium with constant mean

X = εxθ

r = a(X)

Figure 8.3 Sketch of geometry of slowly varying circular duct.

pressure and a slowly varying sound speed c0 = c0(εx) (for simplicity no variation in r and θ is

assumed). Sound waves of circular frequency ω are described by a variant of the Helmholtz equation

∇·
( 1

k2
∇ p

)
+ p = 0 (8.46)

where k = k(εx) = ω/c0(εx), with boundary condition a vanishing normal velocity component at

the wall, so

n·∇ p = 0 at r = a(εx). (8.47)

Since (section A.3)

n ∝ ∇
(

r − a(εx)
)

= er − εa′(εx)ex,

(where a′(z) = da(z)/dz) this is

∂p

∂r
− εa′(εx)

∂p

∂x
= 0 at r = a(εx). (8.48)

We know that for constant a and constant k the general solution can be built up from modes of the

following type (chapter 7)

p = AJm(αmµr) e−imθ−ikmµx , (8.49)

αmµ = j ′
mµ/a,

k2
mµ = k2 − α2

mµ, Re(kmµ) > 0, Im(kmµ) 6 0,

and we assume for the present problem, following the previous section, that there are solutions close

to these modes. We introduce the slow variable

X = εx
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so that k = k(X), and we seek a solution of slowly varying modal type:

p = A(X, r; ε) e−imθ e−iε−1
∫ X

0 γ (ξ ;ε) dξ (8.50)

Since

∇·
( 1

k2
∇ p

)
= ∂

∂x

( 1

k2

∂p

∂x

)
+ 1

k2

(∂2 p

∂r2
+ 1

r

∂p

∂r
+ 1

r2

∂2 p

∂θ2

)

∂p

∂x
=

(
−iγ A + ε

∂A

∂X

)
exp

(
· · ·

)

∂2 p

∂x2
=

(
−γ 2 A − 2iεγ

∂A

∂X
− iε

∂γ

∂X
A + ε2 ∂

2 A

∂X2

)
exp

(
· · ·

)

we have for (8.46) after multiplication with k2:

[
−γ 2 A − 2iεγ

∂A

∂X
− iε

∂γ

∂X
A + ε2 ∂

2 A

∂X2
− 2ε

1

k

∂k

∂X

(
−iγ A + ε

∂A

∂x

)

+∂
2 A

∂r2
+ 1

r

∂A

∂r
− m2

r2
A + k2 A

]
exp

(
· · ·

)
= 0.

After suppressing the exponential factor, this is up to order O(ε)

L(A) = iε
k2

A

∂

∂X

(γ A2

k2

)
,

∂A

∂r
+ iε

∂a

∂X
γ A = 0 at r = a(X),

(8.51)

where we introduced for short the Bessel-type operator (see Appendix D)

L(A) = ∂2 A

∂r2
+ 1

r

∂A

∂r
+

(
k2 − γ 2 − m2

r2

)
A

and rewrote the right-hand side in a form convenient later. Expand

A(X, r; ε) = A0(X, r)+ εA1(X, r)+ O(ε2)

γ (X; ε) = γ0(X)+ O(ε2)

substitute in (8.51), and collect like powers of ε.

O(1) : L(A0) = 0 (8.52)

∂A0

∂r
= 0 at r = a(X),

O(ε) : L(A1) = i
k2

A0

∂

∂X

(γ0 A2
0

k2

)
(8.53)

∂A1

∂r
= −i

∂a

∂X
γ0 A0 at r = a(X).
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Since variable X plays no other rôle in (8.52) than that of a parameter, we have for A0 the “almost-

mode”

A0(X, r) = P0(X)Jm(α(X)r),

α(X) = j ′
mµ/a(X), (8.54)

γ 2
0 (X) = k2(X)− α2(X), Re(γ0) > 0, Im(γ0) 6 0,

The amplitude P0 is still undetermined, and follows from a solvability condition for A1. As before,

amplitude P0 is determined at the level of A1, without A1 necessarily being known.

Multiply left- and right-hand side of (8.53) with r A0/k2 and integrate to r from 0 to a(X). For the

left-hand side we utilize the self-adjointness of rL.

∫ a

0

r A0

k2
L(A1) dr = 1

k2

∫ a

0

r A0L(A1)− r A1L(A0) dr = 1

k2

[
r A0

∂A1

∂r
− r A1

∂A0

∂r

]a

0

= −i
γ0a

k2

∂a

∂X
A2

0.

For the right-hand side we apply the Leibniz integral rule

i

∫ a

0

∂

∂X

(γ0 A2
0

k2

)
r dr = i

d

dX

∫ a

0

rγ0 A2
0

k2
dr − i

γ0a

k2

∂a

∂X
A2

0.

As a result

∫ a

0

rγ0 A2
0

k2
dr =

[
γ0

2k2
P2

0

(
r2 − m2

α2

)
Jm(αr)2

]a

0

= γ0 P2
0

2k2
a2

(
1 − m2

j ′
mµ

2

)
Jm( j ′

mµ)
2 = constant

or:

P0(X) = const.
k(X)

a(X)
√
γ0(X)

= const.
k(X)α(X)√
γ0(X)

(8.55)

It is not accidental that the above integral
∫ a

0
(rγ0 A2

0/k2) dr is constant. The transmitted power of p is

to leading order

P =
∫ 2π

0

∫ a

0

1
2

Re(pu∗)r drdθ = π

ωρ0

∫ a

0

Im
(

p ∂
∂x

p∗
)

r dr

= π

ωρ0

Re(γ0) e2ε−1
∫ X

0 Im(γ0) dξ

∫ a

0

|A0|2r dr. (8.56)

This is for propagating modes (γ0 real) constant:

P = π

ωρ0

γ0|P0|2 1
2
a2

(
1 − m2

j ′
mµ

2

)
Jm( j ′

mµ)
2 = const.

γ0

ρ0

k2

a2γ0

a2 = const.
1

ρ0c2
0

= constant

since ρ0c2
0 is, apart from a factor, equal to the constant mean pressure.
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8.5 Reflection at an isolated turning point

An important property of expression (8.55) for P0 is that it becomes invalid when γ0 = 0. So when

the medium and diameter vary in such a way that at some point X = X0 wave number γ0 vanishes,

the present method breaks down [200, 167, 168, 170, 225]. In a small interval around X0 the mode

does not vary slowly and locally a different approximation is necessary.

When γ 2
0 changes sign, and γ0 changes from real into imaginary, the mode is split up into a cut-

on reflected part and a cut-off transmitted part. If X0 is isolated, such that there are no interfering

neighbouring points of vanishing γ0, it is clear that no power is transmitted beyond X0 (Re(γ0) = 0 in

(8.56)), and the wave has to reflect at X0. Therefore, a point where wave number γ0 vanishes is called

a “turning point”.

X0

Figure 8.4 Turning point X0, where a mode changes from cut-on to cut-off.

Asymptotically, a turning point region is a boundary layer and the appropriate analysis is that of

matched asymptotic analysis (section 8.8), in the context of the WKB method (see [13, 80]). However,

since the physics of the subject is most relevant in this section on slowly varying ducts, we will present

the pertaining results here2.

Assume at X = X0 a transition from cut-on to cut-off, so ∂
∂X
γ 2

0 < 0 or

c′
0(X0)

c0(X0)
− a′(X0)

a(X0)
> 0, or α′(X0)− k ′(X0) > 0.

Consider an incident, reflected and transmitted wave of the type found above (equations 8.50,8.54,8.55).

So in X < X0, where γ0 is real positive, we have the incident and reflected waves

p(x, r, θ) = k(X)α(X)√
γ0(X)

Jm(α(X)r) e−imθ
[
e
−iε−1

∫ X
X0
γ0(X

′) dX ′
+R e

iε−1
∫ X

X0
γ0(X

′) dX ′]
(8.57)

with reflection coefficient R to be determined. In X > X0, where γ0 is imaginary negative, we have

the transmitted wave

p(x, r, θ) = T
k(X)α(X)√
γ0(X)

Jm(α(X)r) e−imθ e
−iε−1

∫ X
X0
γ0(X

′) dX ′
. (8.58)

with transmission coefficient T to be determined, while
√
γ0 = e− 1

4π i
√

|γ0| will be taken.

2As is explained in section 8.8, the steps in the process of determining the boundary layer thickness and equations, and

finally the matching, are very much coupled, and usually too lengthy to present in detail. Therefore, to keep the present

example concise, we will present the results with a limited amount of explanation.
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This set of approximate solutions of equation (8.46), valid outside the turning point region, constitute

the outer solution. Inside the turning point region this approximation breaks down. The approximation

is invalid here, because neglected terms of equation (8.46) are now dominant, and another approxim-

ate equation is to be used. This will give us the inner or boundary layer solution. To determine the

unknown constants (here: R and T ), inner and outer solution are asymptotically matched.

For the matching it is necessary to determine the asymptotic behaviour of the outer solution in the

limit X → X0, and the boundary layer thickness (i.e. the appropriate local coordinate).

From the limiting behaviour of the outer solution in the turning point region (see below), we can

estimate the order of magnitude of the solution. From a balance of terms in the differential equation

(8.46) it transpires that the turning point boundary layer is of thickness X − X0 = O(ε2/3), leading to

a boundary layer variable ξ given by

X = X0 + ε2/3ξ.

Since for ε → 0

γ 2
0 (X) = γ 2

0 (X0 + ε2/3ξ) = −2ε2/3k0(α
′
0 − k ′

0)ξ + O(ε4/3ξ 2),

where k0 = k(X0), k ′
0 = k ′(X0), etc., we have

1

ε

∫ X

X0

γ0(X
′) dX ′ =

{
− 2

3
|ξ̄ |3/2 = −ζ, if ξ < 0

−i 2
3
ξ̄ 3/2 = −iζ, if ξ > 0

where we introduced

ξ̄ = {2k0(α
′
0 − k ′

0)}1/3ξ and ζ = 2
3
|ξ̄ |3/2.

The limiting behaviour for X ↑ X0 is now given by

p ≃ k0 α0

{2εk0(α
′
0 − k ′

0)}1/6 |ξ̄ |1/4
Jm(α0r) e−imθ

(
eiζ +R e−iζ

)
, (8.59)

while it is for X ↓ X0 given by

p ≃ T
e

1
4π i k0 α0

{2εk0(α
′
0 − k ′

0)}1/6 ξ̄ 1/4
Jm(α0r) e−imθ e−ζ . (8.60)

Since the boundary layer is relatively thin, also compared to the radial coordinate, the behaviour of the

incident mode remains rather unaffected in radial direction, and we can assume in the turning point

region

p(x, r, θ) = Jm(α(X)r)ψ(ξ) e−imθ .

From the properties of the Bessel equation (D.1), we have

∂2 p

∂r2
+ 1

r

∂p

∂r
+ 1

r2

∂2 p

∂θ2
+ k2 p = γ 2

0 p = O(ε2/3)p.

Hence, equation (8.46) yields

k2∇·
( 1

k2
∇ p

)
+k2 p ≃ ε2/3 ∂

2 p

∂ξ 2
+γ 2

0 p = ε2/3 Jm(α(X)r) e−imθ
{∂2ψ

∂ξ 2
−2k0(α

′
0 −k ′

0)ξψ
}

= 0
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Figure 8.5 Airy functions

which is, written in variable ξ̄ , equivalent to Airy’s equation (D.83)

∂2ψ

∂ξ̄ 2
− ξ̄ψ = 0.

This has the general solution (see figure 8.5)

ψ(ξ) = a Ai(ξ̄ )+ b Bi(ξ̄ ),

where a and b, parallel with R and T , are now determined from matching. Using the asymptotic

expressions (D.84,D.85) for Airy functions, we find that for ξ̄ large with 1 ≪ ξ̄ ≪ ε−2/3, equation

(8.60) matches the inner solution if

a

2
√
πξ̄ 1/4

e−ζ + b
√
πξ̄ 1/4

eζ ∼ T
e

1
4π i k0 α0

{2εk0(α
′
0 − k ′

0)}1/6 ξ̄ 1/4
e−ζ .

Since eζ → ∞, we can only have b = 0, and thus

a = 2
√
π T k0 α0 e

1
4π i

{2εk0(α
′
0 − k ′

0)}1/6
.

If −ξ̄ is large with 1 ≪ −ξ̄ ≪ ε−2/3 we use the asymptotic expression (D.84), and find that equation

(8.59) matches the inner solution if

a
√
π |ξ̄ |1/4

cos(ζ − 1
4
π) ∼ k0 α0

{2εk0(α
′
0 − k ′

0)}1/6 |ξ̄ |1/4
(eiζ +R e−iζ ),

or

T e
1
4
π i(eiζ− 1

4
π i + e−iζ+ 1

4
π i) = T eiζ +T i e−iζ ∼ eiζ +R e−iζ .

So, finally, we have

T = 1, R = i . (8.61)
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8.6 Ray acoustics in temperature gradient

When a sound wave propagates in free space through a medium that varies on a much larger scale

than the typical wave length (typically: temperature gradients, or wind with shear), the same ideas of

multiple scales may be applied. In contrast to the duct, where the wave is confined by the duct walls,

the waves may now freely refract and follow curved paths. These paths are called rays. This means

that rays are not localized “beams” of sound, but only the tangents of the intensity vectors of a sound

field.

Consider an infinite 3D medium with varying temperature but otherwise with a constant mean pres-

sure, so that we have again equation (8.46), but now c varying more generally as a function of x

∇·
(

c2
0∇ p

)
+ ω2 p = 0, c0 = c0(εx) (8.62)

for a time harmonic sound field p ∝ eiωt . The typical lengthscale L of sound speed variations, es-

timated from L−1 ∼ ‖∇c0‖/c0, is assumed much larger than the typical wave length λ ∼ c0/ω. In

order to quantify this, we write c0 = c0(εx) where the small parameter ε is given by ε = λ/L . In the

following, we will see that this introduction of ε is a convenient way of keeping the large and small

terms apart.3

Assuming the field to be locally plane we try an approximate solution having the form of a plane wave

but with slowly varying (real) amplitude A = A(X; ε) and phase τ = τ(X)

p(x) = A e−iτ/ε (8.63)

where X = εx the slow variable. The surfaces τ(X) = εωt describe the propagating wave front. Note

that the vector field ∇τ is normal to the surfaces τ = constant (section A.3). Define the operator

∇ =
( ∂

∂X
,
∂

∂Y
,
∂

∂Z

)

so that ∇ = ε∇. Define the local wave vector

k = ∇τ, (8.64)

inspired by the fact that if we approximate locally τ(X) = τ0 + ∇τ ·X + . . . (with τ0 an unimport-

ant constant), the wave becomes a plane wave ≃ A0 eiωt−ik·x with frequency ω and wave vector k.

Substitute (8.63) in (8.62):

∇ p =
(
ε∇ A − i Ak

)
e−iτ/ε, (8.65a)

∇2 p =
(
ε2∇2

A − 2iε∇ A·k − iεA∇ ·k − A|k|2
)

e−iτ/ε, (8.65b)

to obtain

(ω2 − c2
0|k|2)A − iεA−1∇ ·(c2

0 A2k
)
+ ε2∇ ·(c2

0∇ A
)

= 0. (8.66)

Expand

A(X; ε) = A0(X)+ εA1(X)+ O(ε2)

3It should be noted that our point of view here is to think of the problem as a wave in a slowly varying medium, i.e. to

consider L “large”. Another, equally valid point of view is to think of a medium with a high frequency wave, i.e. to scale

the problem on L and to consider the wave length “short” or the frequency “high”.
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and collect like powers in (8.66). We find to leading order

c2
0|k|2 − ω2 = 0 (8.67)

∇ ·(c2
0 A2

0k
)

= 0. (8.68)

Equation (8.67) is the eikonal equation, which determines the wave fronts and the ray paths. Equation

(8.68) is called the transport equation and describes the conservation of wave action, which is here

equivalent to conservation of energy [122, 253]. It relates the amplitude variation to diverging or

converging rays.

The eikonal equation is a nonlinear first order partial differential equation, of hyperbolic type, which

can always be reduced to an ordinary differential equation along characteristics [35]. This is summar-

ized by the following theorem ([253, p.65]).

Theorem 8.1 (General solution of 1st order PDE)

The solution of the first-order partial differential equation

H (k, τ, x) = 0, k = ∇τ,

with consistent boundary conditions on a surface S, is given by the system of ordinary differential

equations4

dχ

dλ
= ∇k H,

dτ

dλ
= k·∇k H,

dk
dλ

= −k
∂H

∂τ
− ∇x H,

where the curve x = χ(λ), with parameter λ, is called a characteristic.

A characteristic forms a path along which the information of the boundary values on S is transferred to

the point of observation. In general the characteristic depends on the solution, and both characteristic

and solution are to be determined together. If more than one point of a characteristic is part of S, the

boundary conditions are not independent, and in general inconsistent. If more than one characteristic

passes through a point, the solution is not unique.

By starting from other, equivalent, equations H (k, τ, x) = 0, we obtain the same solution but with

other parametrizations.

Sometimes a preferable parametrization is the so-called natural parametrization, with λ equal to the

arclength and ‖ d
dλ
χ‖ = 1.

The characteristics are here identical to the rays. By rewriting equation (8.67) as 1
2
ε(c2

0|k|2 −ω2)/ω =
0 and using theorem (8.1) (p.197), the characteristic variable is just the time t (but not the arclength),

and we have the expected

τ(X(t)) = εωt (8.69)

along a ray X = X(t) given by

dX
dt

= εc0

k
|k| . (8.70a)

dk
dt

= −ε|k|∇c0. (8.70b)

4∇k H denotes the gradient in k: ( ∂H
∂ki
); similar for ∇x H .
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where |k| = ω/c0. Equations (8.70) form a first order system of ordinary differential equations, called:

“ray-tracing equations”. Together with suitable initial value conditions in k and X, they constitute an

initial value problem that can be solved numerically by standard integration routines like a Runge-

Kutta method.

Once we know the rays, the transport equation (8.68) can be solved as follows. Consider a small area

S1 of the surface τ = C1, and connect the points of S1 via the rays (following the vector field k) with

the corresponding area S2 on the surface τ = C2. Then the volume of rays connecting S1 and S2 is

called a ray-tube. Since k is just parallel to the tube’s surface, except for S1 and S2 where it is just

ω/c0 and perpendicular to it, we have (with Gauss’ theorem)

∫

tube

∇ ·(c2
0 A2

0k
)

dX = 0 =
∫

S2

c0 A2
0 ds −

∫

S1

c0 A2
0 ds.

If we associate to a ray X(t) a ray-tube with cross section S = S(X), the amplitude varies according

to the relation

A2
0(X)c0(X)S(X) = constant along a ray tube. (8.71)

From equation (8.70b) it can be inferred that a ray (with direction k) bends away from regions with

higher sound speed. This explains why sound is carried far along a cold surface like water or snow, and

not at all along for example hot sand. When the surface is cold there is a positive soundspeed gradient

which causes the sound waves to bend downwards to the surface. In combination with reflection at the

surface the sound is trapped and tunnels through the layer adjacent to the surface. When the surface

is hot there is a negative soundspeed gradient which causes the sound to bend upwards and so to

disappear into free space.

We can make this more explicit for a sound speed that varies linearly in space. We have then the

remarkable result of exact solutions of rays following plane circles. To show this in detail, it is neces-

sary that we obtain a parametrization that corresponds with an arclength (in the slow coordinate X).

Therefore, we recast the eikonal equation in the form

H (X, τ, k) = 1

2

(
|k| − ω2

c2
0|k|

)
(8.72)

and obtain from theorem (8.1)

dX
ds

= ∇k H = 1

2

k
|k| + 1

2

ω2

c2
0|k|3

k = k
|k| = t

dτ

ds
= k·∇k H = k·k

|k| = |k|

dk
ds

= −k
∂H

∂τ
− ∇X H = 0 − ω2

c3
0|k|

∇c0 = −|k|
c0

∇c0

The ray is given by the curve X = X(s) and launched at X(0) = εx(0) in the direction k(0) with

initial phase τ(0). Since we have applied the so-called natural parametrization, with s the arclength,
d
ds

X = t is the unit tangent vector and d2

ds2 X the curvature vector:

κ = d2 X
ds2

= 1

ω

d

ds

(
c0k

)
= 1

ω

[
k
|k|(∇c0 ·k)− |k|∇c0

]
(8.73)
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The curvature, or reciprocal radius, is then

|κ| = 1

ω

[
|k|2|∇c0|2 − (∇c0 ·k)2

]1/2
(8.74)

Now we use the fact that c0 varies linearly in (say) direction n:

c0 = q + α(X ·n), ∇c0 = αn. (8.75)

Decompose vector k in a component in n direction and one orthogonal to it

k = k0n + k1b, with n·b = 0, |b| = 1. (8.76)

Of course, k0 = (k·n) and k1 = (k·b). It follows from

dk
ds

= −|k|
c0

∇c0 = −|k|
c0

αn (8.77)

that k only varies in n-direction, while k1b is constant, determined by the initial wave vector k(0).
Since also n is fixed, it is only k0 = k0(s) that varies with s. So we go on with the curvature

κ = 1

ω|k|
[
k(∇c0 ·k)− |k|2∇c0

]
= 1

ω|k|
[
(k0n + k1b)αk0 − (k2

0 + k2
1)αn

]

= 1

ω|k|
[
αk2

0n + αk0k1b − αk2
0n − αk2

1 n
]

= αk1

ω|k|(k0b − k1n) = αk1

ω
c

(8.78)

where vector

c = k0b − k1n
|k| (8.79)

is the unit curvature vector (or principal normal unit vector) of curve X(s). Since n and b are constant,

c, and therefore X, is in one plane. More precisely formulated: the normal vector of the plane of X
(the so-called osculating plane of X) is

t×c = n×b

or the unit binormal vector of X . Since n and b are constant, the torsion of X

d

ds
(t×c) = 0

is zero, and X is a plane curve. Furthermore, since the curvature

|κ| =
∣∣∣∣
αk1

ω

∣∣∣∣

is constant, the curve is a circle. The radius (in x coordinates) is R = |ω/αk1ε|, and depends on the

initial condition k1. The center of the circle is found at x = x(0)+ Rc. See [124].
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8.7 Refraction in shear flow

The propagation of sound waves in the atmosphere is greatly affected by wind. For example, the

communication between two people, one downstream and one upstream, is not symmetric. The one

upstream is easier to understand for the one downstream than the other way around. This is not because

the wind “carries the waves faster”, but it is due to refraction by the wind gradient (the atmospheric

boundary layer). This is seen as follows ([122]).

U (z)

Figure 8.6 Refraction in shear flow.

Consider the acoustic wave equations (2.51a-2.51d) for sound in an arbitrary mean flow. We assume

the sound field to be time harmonic with a frequency high enough to adopt a ray approximation. The

small parameter is now again ε ∼ c0/ωL , with L a typical length scale for variations in the mean flow

velocity v0. Similar to the foregoing chapter we introduce the compressed variable X = εx and the

ray approximations

p, ρ, v, s = P(X; ε), R(X; ε), V (X; ε), S(X; ε)× eiωt−iτ (X)/ε

which are substituted in (2.51a-2.51d), with ∇τ = k, to obtain to leading order

ρ0V (ω − v0 ·k) = P k, R(ω − v0 ·k) = ρ0V ·k,

S(ω− v0 ·k) = 0, P(ω − v0 ·k) = c2
0 R(ω − v0 ·k).

This yields S = 0, P = c2
0 R and an eikonal equation

c2
0|k|2 =

(
ω − v0 ·k

)2
. (8.80)

This equation is similar to (8.67). By rewriting eq. (8.80) as 1
2
εc2

0|k|2/(ω−v0 ·k)− 1
2
ε(ω−v0 ·k) = 0

and using theorem (8.1) (p.197), the characteristic variable is just the time t , and we have

τ(X) = εωt

along the ray X = X(t), given by5

dX
dt

= ε

(
c0

k
|k| + v0

)
, (8.81a)

dk
dt

= −ε
(
|k|∇c0 + ∇v0 ·k

)
. (8.81b)

5 (∇v·k)i =
∑

j
∂v j

∂xi
k j .
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A popular, but unnecessary approximation is to write the above equations (8.81) in the same form as

(8.70), by introducing an “effective sound speed” ceff as follows.

dX
dt

≃ εceff

k
|k| ,

dk
dt

≃ −ε|k|∇ceff, ceff = c0 + k
|k| ·v0.

This approximation is correct if v0 − k
|k|(

k
|k| ·v0) and |k|(∇ k

|k| ·v0) are negligible (for example when k
points mainly in the direction of v0 and varies little spatially). This depends, among other things, on the

initial conditions and the trajectory traversed, and should always be checked afterwards. Moreover, the

numerical solution is not simpler, so there seems to be no good reason to resort to this approximation.

For a simple parallel flow in x-direction, varying only in z, and a uniform sound speed

v0(X) = (U0(Z), 0, 0)

equation (8.81b) becomes

dkx

dt
= dky

dt
= 0,

dkz

dt
= −εU ′

0(Z)kx . (8.82)

So, if we start with for example a vertical wave front k = kx ex , then a positive wind shear (dU0/dZ >

0) will decrease the z-component kz . In other words, the rays will bend towards the low wind-speed

regions. Propagating with the wind, the waves bend down and remain near the ground; against the

wind they bend up and disappear in the free space.

8.8 Matched asymptotic expansions

Introduction

Very often it happens that a simplifying limit applied to a more comprehensive model gives a correct

approximation for the main part of the problem, but not everywhere: the limit is non-uniform. This

non-uniformity may be in space, in time, or in any other variable. For the moment we think of non-

uniformity in space. This non-uniformity may be a small region near a point, say x = 0, or it may be

far away, i.e. for x → ∞, but this is of course still a small region near the origin of 1/x , so for the

moment we think of a small region.

If this region of non-uniformity is crucial for the problem, for example because it contains a boundary

condition, or a source, we may not be able to utilize the pursued limit and have to deal with the full

problem (at least locally). This, however, is usually not true. The local nature of the non-uniformity

itself gives often the possibility of another reduction. In such a case we call this a couple of limiting

forms, “inner and outer problems”, and are evidence of the fact that we have apparently physically

two connected but different problems as far as the dominating mechanism is concerned. (Depending

on the problem) we now have two simpler problems, serving as boundary conditions to each other via

continuity or matching conditions.

Suppose we are interested in the solution of

ε
dy

dx
+ y = sin x, y(0) = 1, x > 0

for small positive ε, and suppose for the moment that we are not able to find an exact solution. It is

natural to try to use the fact that ε is small. For example, from the structure of the problem, where
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both the source and the boundary value are O(1), it is very likely to conclude that y = O(1). If also

the derivative y′ is not very large (which is true for the most, but not, as we will see, everywhere), then

a first approximation is clearly

y0 ≃ sin x .

We could substitute this into the original equation, and find a correction

y1 ≃ sin x − εy′
0 = sin x − ε cos x .

We can continue this indefinitely, and hope for a better and better approximation of the real solution.

However, this can not be true: the approximate solution found this way is completely determined

without integration constants, and we cannot apply anywhere the boundary condition y(0) = 1. In

fact, the value at x = 0 that appears is something like −ε . . . , and quite far away from 1.

What’s happening here? The cause of this all, is the fact that in the neighbourhood of x = 0, to be

exact: for x = O(ε), the solution changes its character over a very short distance (boundary layer),

such that the derivative y′ is now not O(1), but very large: O(ε−1). Since equation and solution are

evidently closely related, also the equation becomes essentially different, and the above approximation

of the equation is not valid anymore.

The remedy to this problem is that we have to stretch the variables such that the order of magnitude of

the solution is reflected in the rescaling. In general this is far from obvious, and certainly part of the

problem. In the present example it goes as follows. We write x = εξ and y(x) = Y (ξ), so that

dY

dξ
+ Y = sin(εξ), Y (0) = 1,

Now we may construct another approximation, locally valid for ξ = O(1)

dY0

dξ
+ Y0 ≃ 0, Y0(0) = 1,

with solution Y0(ξ) = e−ξ . We may continue to construct higher order corrections. Then we will see

that for ξ large, respectively x small, this inner solution Y0 smoothly changes into the above outer

solution y0 (matching), and together they form a uniform approximation.

General methodology

In the following we will describe some of the mathematical methodology in more detail ([158, 13, 54,

116, 42, 80, 112, 105]). We are interested in the limiting behaviour for ε ↓ 0 of a sufficiently smooth

function 8(x; ε) with, say, 06x61, 0<ε6ε0. 8 has a regular asymptotic approximation on [0, 1]
if there exists a gauge-function µ0(ε) and a shape-function 80(x) such that

lim
ε→0

∣∣∣∣
8(x; ε)
µ0(ε)

−80(x)

∣∣∣∣ = 0 uniform in x

or:

8(x; ε) = µ0(ε)80(x)+ o(µ0) (ε → 0, uniform in x).
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A regular asymptotic series expansion, with gauge-functions µn(ε) and shape-functions 8n(x) is

defined by induction, and we say

8(x; ε) =
N∑

n=0

µn(ε)8n(x)+ o(µN ) (ε → 0, uniform in x). (8.83)

Note that neither gauge- nor shape-functions are unique. Furthermore, the series is only asymptotic in

ε for fixed N . The limit N → ∞ may be meaningless.

The functions that concern us here do not have a regular asymptotic expansion on the whole inter-

val [0, 1] but say, on any partial interval [A, 1], A> 0, A fixed. We call this expansion the outer-
expansion, valid in the “x = O(1)”-outer region.

8(x; ε) =
N∑

n=0

µn(ε)ϕn(x)+ o(µN ) ε → 0, x = O(1). (8.84)

The functions do not have a regular expansion on the whole interval because the limit ε→ 0, x → 0 is

non-uniform and may not be exchanged. There is a gauge-function δ(ε), with lim
ε→0

δ(ε) = 0, such that

in the stretched coordinate

ξ = x

δ(ε)

the function 9(ξ ; ε) = 8(δ(ε)ξ ; ε) has a non-trivial regular asymptotic series expansion on any

partial interval ξ ∈ [0, A], A> 0, A fixed. The adjective non-trivial is essential: the expansion must be

“significant”, i.e. different from the outer-expansion in ϕn rewritten in ξ . For the largest δ(ε) with this

property we call the expansion for 9 the inner-expansion or boundary layer expansion, the region

ξ = O(1) or x = O(δ) being the boundary layer with thickness δ, and ξ the boundary layer variable.

A boundary layer may be nested and may contain more boundary layers.

Suppose, 8(x; ε) has an outer-expansion

8(x; ε) =
n∑

k=0

µk(ε)ϕk(x)+ o(µn) (8.85)

and a boundary layer x = O(δ) with inner-expansion

9(ξ ; ε) =
m∑

k=0

λk(ε)ψk(ξ)+ o(λm) (8.86)

and suppose that both expansions are complementary, i.e. there is no other boundary layer in between

x = O(1) and x = O(δ), then the “overlap-hypothesis” says that both expansions represent the same

function in an intermediate region of overlap. This overlap region may be described by a stretched

variable x = η(ε)σ , asymptotically in between O(1) and O(δ), so: δ≪η≪ 1. In the overlap region

both expansions match, which means that asymptotically both expansions are equivalent and reduce

to the same expressions. A widely used and relatively simple procedure is Van Dyke’s matchings

rule [238]: the outer-expansion, rewritten in the inner-variable, has a regular series expansion, which

is equal to the regular asymptotic expansion of the inner-expansion, rewritten in the outer-variable.
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Suppose that

n∑

k=0

µk(ε)ϕk(δξ) =
m∑

k=0

λk(ε)ηk(ξ)+ o(λm) (8.87a)

m∑

k=0

λk(ε)ψk(x/δ) =
n∑

k=0

µk(ε)θk(x)+ o(µn) (8.87b)

then the expansion of ηk back to x

n∑

k=0

λk(ε)ηk(x/δ) =
n∑

k=0

µk(ε)ζk(x)+ o(µn)

is such that ζk = θk for k = 0, · · · , n.

The idea of matching is very important because it allows one to move smoothly from one regime into

the other. The method of constructing local, but matching, expansions is therefore called “Matched

Asymptotic Expansions” (MAE).

The most important application of this concept of inner- and outer-expansions is that approximate

solutions of certain differential equations can be constructed for which the limit under a small para-

meter is apparently non-uniform. Typical examples in acoustics are small Helmholtz number problems

where long waves are scattered by small objects or otherwise connected to a small geometrical size.

The main lines of argument for constructing a MAE solution to a differential equation + boundary

conditions are as follows. Suppose 8 is given by the equation

D(8′,8, x; ε) = 0 + boundary conditions, (8.88)

where 8′ = d8/dx . Then we try to construct an outer solution by looking for “non-trivial degenera-

tions” of D under ε → 0, that is, find µ0(ε) and ν0(ε) such that

lim
ε→0

ν−1
0 (ε)D(µ0ϕ

′
0, µ0ϕ0, x; ε) = D0(ϕ

′
0, ϕ0, x) = 0 (8.89)

has a non-trivial solution ϕ0. A series ϕ = µ0ϕ0 +µ1ϕ1 + · · · is constructed by repeating the process

for D − ν−1
0 D0, etc.

Suppose, the approximation is non-uniform (for example, not all boundary conditions can be satisfied),

then we start looking for an inner-expansion if we have reasons to believe that the non-uniformity

is of boundary-layer type. Presence, location and size of the boundary layer(s) are now found by

the “correspondence principle”, that is the (heuristic) idea that if 8 behaves somehow differently in

the boundary layer, the defining equation must also be essentially different. Therefore, we search for

“significant degenerations” or “distinguished limits” of D. These are degenerations of D under ε→ 0,

with scaled x and 8, that contain the most information, and without being contained in other, richer,

degenerations.

The next step is then to select from these distinguished limits the one(s) allowing a solution that

matches with the outer solution and satisfies any applicable boundary condition.
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Symbolically:

find

x0, δ(ε), λ(ε), κ(ε)

with

x = x0 + δξ, 8(x; ε) = λ(ε)9(ξ ; ε)
such that

B0(ψ
′
0, ψ0, ξ ) = lim

ε→0
κ−1 D(δ−1λ9 ′, λ9, x0 + δξ ; ε)

has the “richest” structure, and there exists a solution of

B0(ψ
′
0, ψ0, ξ ) = 0

satisfying boundary and matching conditions. Again, an asymptotic expansion may be constructed

inductively, by repeating the argument. It is of practical importance to note that the order estimate λ

of 8 in the boundary layer is often determined a posteriori by boundary or matching conditions.

Simple example

A simple example to illustrate some of the main arguments is

D(ϕ′, ϕ, x; ε) = ε
d2ϕ

dx2
+ dϕ

dx
− 2x = 0, ϕ(0) = ϕ(1) = 2. (8.90)

The leading order outer-equation is evidently (with µ0 = ν0 = 1)

D0 = dϕ0

dx
− 2x = 0

with solution ϕ0 = x2 + A. The integration constant A can be determined by the boundary condition

ϕ0(0) = 2 at x = 0 or ϕ0(1) = 2 at x = 1, but not both, so we expect a boundary layer at either end.

By trial and error we find that no solution can be constructed if we assume a boundary layer at x = 1,

so, inferring a boundary layer at x = 0, we have to use the boundary condition at x = 1 and find

ϕ0 = x2 + 1

The structure of the equation suggests a correction of O(ε), so we try the expansion

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + · · · .

This results for ϕ1 into the equation

dϕ1

dx
+ d2ϕ0

dx2
= 0, with ϕ1(1) = 0 (the O(ε)-term of the

boundary condition),

which has the solution

ϕ1 = 2 − 2x .
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Higher orders are straightforward:

dϕn

dx
= 0, with ϕn(1) = 0

leading to solutions ϕn ≡ 0, and we find for the outer expansion

ϕ = x2 + 1 + 2ε(1 − x)+ O(εN ). (8.91)

We continue with the inner expansion, and find with x0 = 0, ϕ = λψ , x = δξ

ελ

δ2

d2ψ

dξ 2
+ λ

δ

dψ

dξ
− 2δξ = 0.

Both from the matching (ϕouter → 1 for x ↓ 0) and from the boundary condition (ϕ(0) = 2) we have

to conclude that ϕinner = O(1) and so λ = 1. Furthermore, the boundary layer has only a reason for

existence if it comprises new effects, not described by the outer solution. From the correspondence

principle we expect that new effects are only included if (d2ψ/dξ 2) is included. So εδ−2 must be at

least as large as δ−1, the largest of δ−1 and δ. From the principle that we look for the equation with

the richest structure, it must be exactly as large, implying a boundary layer thickness δ = ε. Thus we

have κ = ε−1, and the inner equation

d2ψ

dξ 2
+ dψ

dξ
− 2ε2ξ = 0.

From this equation it would seem that we have a series expansion without the O(ε)-term, since the

equation for this order would be the same as for the leading order. However, from matching with the

outer solution:

ϕouter → 1 + 2ε + ε2(ξ 2 − 2ξ)+ · · · (x = εξ, ξ = O(1))

we see that an additional O(ε)-term is to be included. So we substitute the series expansion:

ψ = ψ0 + εψ1 + ε2ψ2 + · · · . (8.92)

It is a simple matter to find

d2ψ0

dξ 2
+ dψ0

dξ
= 0 , ψ0(0) = 2 → ψ0 = 2 + A0(e

−ξ −1)

d2ψ1

dξ 2
+ dψ1

dξ
= 0 , ψ1(0) = 0 → ψ1 = A1(e

−ξ −1)

d2ψ2

dξ 2
+ dψ2

dξ
= 2ξ, ψ2(0) = 0 → ψ2 = ξ 2 − 2ξ + A2(e

−ξ −1)

where constants A0, A1, A2, · · · are to be determined from the matching condition that outer expan-

sion (8.91) for x → 0 :

1 + x2 + 2ε − 2εx + · · ·

must be functionally equal to inner expansion (8.92) for ξ →∞:

2 − A0 − εA1 + x2 − 2εx − ε2 A2 + · · · .
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A full matching is obtained if we choose: A0 = 1, A1 = −2, A2 = 0.

It is important to note that a matching is possible at all! Only a part of the terms can be matched

by selection of the undetermined constants. For example, the coefficients of the x and x2 terms are

already equal, without free constants. This is an important consistency check on the found solution, at

least as long as no real proof is available. If no matching appears to be possible, almost certainly one

of the assumptions made with the construction of the solution have to be reconsidered. Particularly

notorious are logarithmic singularities of the outer field, not uncommon in 2D acoustical radiation

problems ([116]). Even for such a simple (looking) problem as that of a plane wave scattered by a

static compact sphere a careful approach is necessary to get the right results ([38]). On the other hand,

only in rather rare cases, probably related to exceptional physical phenomena, no matching couple of

inner and outer solutions is possible at all.

Summarizing: matching of inner- and outer expansion plays an important rôle in the following ways:

i) it provides information about the sequence of order (gauge) functions {µk} and {λk} of the

expansions;

ii) it allows us to determine unknown constants of integration;

iii) it provides a check on the consistency of the solution, giving us confidence in the correctness.

8.9 Duct junction

A very simple problem that can be solved with matched asymptotic expansions is the reflection and

transmission of low-frequency sound waves through a junction of two ducts with different diameter.

The problem will appear to be so simple that the apparatus of MAE could justifiably be considered

as a bit of an overkill. However, the method is completely analogous in many other duct problems,

allows any extension to higher orders, and is therefore a good illustration.

Consider two straight hard walled ducts with cross section A1 for x < 0, cross section A2 for x > 0,

in some (here rather irrelevant) way joined together at x = 0 (figure 8.7). Apart from a region near

A1

A2

x = 0
x < 0

x > 0

incident

reflected
transmitted

Figure 8.7 Duct junction.

this junction, the ducts have a constant cross section with a wall normal vector nwall independent of

the axial position.

A sound wave with potential ϕin = eiωt−ikx is incident from x = −∞. The wavelength is large

compared to the duct diameter:

k
√

A1 = ε ≪ 1. (8.93)
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To avoid uninteresting complications, we assume that in terms of ε the ratio A1/A2 is not close to 1 or

0: A1/A2 = O(1), A1 6= A2. Introduce dimensionless variables X := kx , y := y/
√

A1, z := z/
√

A1.

Then for a uniform acoustic medium we have for a time harmonic scattered field ϕ

ε2 ∂
2ϕ

∂X2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
+ ε2ϕ = 0 (8.94a)

∇ϕ ·nwall = 0 at the wall. (8.94b)

In the outer region x = (X, y, z) = O(1) we expand in powers of ε (not ε2 as will be clear in the

end)

ϕ(x; ε) = ϕ0(x)+ εϕ1(x)+ ε2ϕ2(x)+ · · · (8.95)

and substitute in (8.94a) to find that all terms are function of the axial coordinate X only:

O(1) :
∂2ϕ0

∂y2
+ ∂2ϕ0

∂z2
= 0

∇ϕ0 ·nwall = 0





−→ ϕ0 = ϕ0(X), (8.96a)

O(ε) :
∂2ϕ1

∂y2
+ ∂2ϕ1

∂z2
= 0

∇ϕ1 ·nwall = 0





−→ ϕ1 = ϕ1(X), (8.96b)

O(ε2) :

∂2ϕ2

∂y2
+ ∂2ϕ2

∂z2
+ ∂2ϕ0

∂X2
+ ϕ0 = 0

∇ϕ2 ·nwall = 0





−→
ϕ2 = ϕ2(X),

∂2ϕ0

∂X2
+ ϕ0 = 0.

(8.96c)

This last result is obtained from integration over a cross section A
def== {X = constant} with surface

|A|, and applying Gauss’ theorem

∫

A

(∂2ϕ2

∂y2
+ ∂2ϕ2

∂z2
+ ∂2ϕ0

∂X2
+ ϕ0

)
ds =

∫

∂A

(∇ϕ2 ·nwall) dℓ+
(∂2ϕ0

∂X2
+ ϕ0

)
|A| = 0.

Evidently, this process can be continued and we obtain

ϕ0 =
{

e−iX +R0 eiX (X < 0)

T0 e−iX (X > 0)
(8.97a)

ϕn =
{

Rn eiX (X < 0)

Tn e−iX (X > 0)
(8.97b)

(where n > 1). The region X = O(ε) appears to be a boundary layer, and we introduce

x = X/ε,

8 = ϕ(εx, y, z; ε).
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The equation for 8 becomes

∂28

∂x2
+ ∂28

∂y2
+ ∂28

∂z2
+ ε28 = 0 (8.98)

∇8·nwall = 0 at the wall. (8.99)

but now with matching conditions for x → −∞ and x → +∞, i.e. X ↑ 0 and X ↓ 0 of the outer

solution (8.97a-8.97b):

x → −∞ : 8 ≃ 1 + R0 + ε(R1 − ix + ix R0)+ ε2(R2 + ix R1 − 1
2
x2 − 1

2
x2 R0)+ · · · ,

x → +∞ : 8 ≃ T0 + ε(T1 − ixT0)+ ε2(T2 − ixT1 − 1
2
x2T0)+ · · · .

Guided by the behaviour under matching we assume the expansion

8 = 80 + ε81 + ε282 · · · ,

then

O(1) : ∇280 = 0 −→ 80 = constant −→ 1 + R0 = T0 (8.100)

O(ε) : ∇281 = 0 −→ 81 = not necessarily constant.

In general, the solution 81 is difficult to obtain. However, if we are for the moment only interested in

the global effects on reflection and transmission, we can again make use of Gauss’ theorem. Consider

a large volume V , reaching from x = x1 large negative, to x = x2 large positive (large in variable

x but small in variable X , so that we can use the matching conditions). At x = x1 the surface of V

consists of a cross section A1, and at x = x2 a cross section A2. The size of V is denoted by |V |, the

sizes of A1 and A2 by |A1| and |A2|. We integrate over this volume to obtain:

∫

V

∇281 dx = −
∫

A1

∂81

∂x
ds +

∫

A2

∂81

∂x
ds = −(−i + i R0)|A1| − iT0|A2| = 0

so that:

1 − R0 = T0

|A2|
|A1|

(8.101)

which, together with equation (8.100), determines R0 and T0 fully. We continue with the O(ε2) term:

O(ε2) : ∇282 = −80.

Again, to obtain 82 is difficult in a general situation, but if we follow the same arguments as for 81

we find
∫

V

∇282 dx = −80|V | =

−
∫

A1

∂82

∂x
ds +

∫

A2

∂82

∂x
ds = −|A1|(i R1 − x1 − x1 R0)+ |A2|(−iT1 − x2T0)

= −T0(x2|A2| − x1|A1| + θ1)
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where θ1 denotes the difference, due to obvious details of the junction geometry, between |V | and the

sum of the two duct parts x2|A2| − x1|A1|. The above identity results into

|A1|R1 + |A2|T1 = −iT0θ1. (8.102)

This process can be continued, at least formally. For each n-th step more and more information of

solution 8n−2 is needed. For example, the next step for 83 gives a relation for R1 and T1, and R2 and

T2, in terms of the integral (check yourself!)

θ2 =
∫

V

81 dx −
∫ 0

x1

(R1 − ix + i R0x) dx −
∫ x2

0

(T1 − iT0x) dx

= i|A1|R2 + i|A2|T2.

Note that the corrections R1 and T1 are imaginary and therefore appear as a phase shift in the reflected

and transmitted (outer-) waves. So the reflection and transmission amplitudes (i.e. absolute value) are

given by R0 and T0 up to O(ε2).

8.10 Co-rotating line-vortices

−Ŵ

2Ŵ

−Ŵ

Figure 8.8 Three co-rotating vortices.

In an inviscid infinite 2D medium a stationary line vortex produces

a time-independent velocity and pressure field. Two of such vor-

tices, however, move in each others velocity field. Two equally

strong and equally orientated vortices rotate around a common

centre, and produce a fluctuating velocity and pressure field (for

a fixed observer).

If the velocities are relatively low, this field will be practically in-

compressible. A small fraction of the energy, however, will radiate

away as sound [149, 37].

For a physically consistent problem (it is not possible in an inviscid

medium to change the total amount of circulation) we position at the common centre a third vortex

with a double but opposite vortex strength. By symmetry this vortex will not move but of course will

contribute to the rotating motion of the other two.

Inviscid compressible irrotational flow depending on x = r cos θ , y = r sin θ and t is described by

∂ρ

∂t
+ ∇ϕ ·∇ρ + ρ∇2ϕ = 0, (8.103a)

ρ∇
(∂ϕ
∂t

+ 1
2

∣∣∇ϕ
∣∣2

)
+ ∇ p = 0, (8.103b)

p

p0

=
( ρ
ρ0

)γ
, c2 = dp

dρ
= γ p

ρ
, (8.103c)

with density ρ, pressure p, velocity potential ϕ, sound speed c and gas constant γ . Introduce the

auxiliary quantity (c.f. (1.32b))

Q = ∂ϕ

∂t
+ 1

2

∣∣∇ϕ
∣∣2

(8.104)



8.10 Co-rotating line-vortices 211

then

(γ − 1)Q + c2 = c2
0 (constant) (8.105)

where under the assumption that ϕ→ 0 for r →∞ the constant c0 is the far field sound speed. Hence

∂Q

∂t
+ c2

ρ

∂ρ

∂t
= 0, ∇Q + c2

ρ
∇ρ = 0

and so

(
c2

0 − (γ − 1)Q
)
∇2ϕ = ∂Q

∂t
+ ∇ϕ ·∇Q. (8.106)

We will consider two vortices with vortex strength −Ŵ, positioned opposite to each other on the circle

r = a, and a vortex of strength 2Ŵ at the origin r = 0. Their motion around each other will be

incompressible as follows. Typical induced velocities are of the order of Ŵ/a, and we assume this to

be small enough compared to the sound speed for locally incompressible flow:

ε = Ŵ

ac0

≪ 1. (8.107)

Introduce dimensionless variables (where we keep for convenience the same notation):

t := tŴ/a2, x := x/a, y := y/a, ϕ := ϕ/Ŵ, Q := Qa2/Ŵ2.

Equation (8.106) is then in dimensionless form

(
1 − (γ − 1)ε2 Q

)
∇2ϕ = ε2

(∂Q

∂t
+ ∇ϕ ·∇Q

)
. (8.108)

In the inner region r = O(1), we have to leading order the Laplace equation for incompressible

potential flow

∇2ϕ = 0 (8.109)

with solution the sum6 of the contributions of the three co-rotating vortices

ϕ = 1

π
arctan

y

x
− 1

2π
arctan

y − y1(t)

x − x1(t)
− 1

2π
arctan

y − y2(t)

x − x2(t)
. (8.110)

The position vector x1(t) = (x1(t), y1(t)) (and similarly x2(t)) is determined by the observation that

a vortex is just a property of the flow and therefore the velocity
.
x1 (t) must be equal to the induced

velocity of the other vortices at x = x1 :

dx1

dt
= 1

2π

y1 − y2

(x1 − x2)2 + (y1 − y2)2
− 1

π

y1

x2
1 + y2

1

(8.111a)

dy1

dt
= − 1

2π

x1 − x2

(x1 − x2)2 + (y1 − y2)2
+ 1

π

x1

x2
1 + y2

1

. (8.111b)

From symmetry x2 = −x1, and the solution along the circle |x| = 1 is given by

x1 = cos( 1
2
ωt), y1 = sin( 1

2
ωt), where ω = 3/2π, (8.112)

6Equation (8.109) is linear.
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and apart from an irrelevant phase shift. Solution (8.110) can now be written as

ϕ = 1

π
θ − 1

2π
arctan

( r2 sin 2θ − sinωt

r2 cos 2θ − cosωt

)
. (8.113)

For matching with the outer field we need the behaviour of inner solution ϕ for r →∞:

ϕ ≃ sin(ωt − 2θ)

2πr2
+ · · · (r → ∞). (8.114)

For the outer region we first observe that the time scale is dictated by the source, so this is the same

everywhere. Then, if we scale r̃ = δ(ε)r , it follows from matching with equation (8.114) that ϕ =
O(δ2). A significant degeneration of (8.108) is obtained if δ = ε, when ∇2ϕ and ∂2ϕ/∂t2 balance

each other. Together we have:

r = r̃/ε, ϕ = ε2ϕ̃ (8.115a)

Q = ε2
(∂ϕ̃
∂t

+ 1
2
ε4

∣∣∇̃ϕ̃
∣∣2

)
= ε2Q̃ (8.115b)

which gives

(
1 − (γ − 1)ε4 Q̃

)
∇̃2ϕ̃ = ∂ Q̃

∂t
+ ε4∇̃ϕ̃ ·∇̃ Q̃ (8.116)

To leading order, ϕ̃ satisfies the wave equation

∇̃2ϕ̃ − ∂2ϕ̃

∂t2
= 0 (8.117)

with outward radiation conditions for r̃ → ∞ (no source at infinity), and a condition of matching

with (8.114) for r̃ ↓ 0. This matching condition says that, on the scale of the outer solution, the inner

solution behaves like a harmonic point source ∝ e2iωt at r̃ = 0, with properties to be determined.

Relevant point source solutions are

ϕ̃ = Re
{

AH (2)
n (ωr̃) eiωt−inθ

}
(8.118)

with H (2)
n a Hankel function (Appendix D), and order n and amplitude A to be determined. For match-

ing it is necessary that the behaviour for r̃ ↓ 0 coincides with (8.114):

ε2 Re
{
−A

(n − 1)!

iπ

( 2

ωr̃

)n

eiωt−inθ
}

∼ sin(ωt − 2θ)

2πr2
(8.119)

(if n > 1). Clearly, there is no other possibility than n = 2, and hence A = − 1
8
ω2. Note that this

order 2 indicates an acoustic field equivalent to that of a rotating lateral quadrupole. In dimensional

variables the acoustic far field is given by

ϕ ≃ ŴM3/2

2

( a

πr

)1/2

cos
(
�(t − r/c0)− 2θ + 1

4
π

)
. (8.120)

where frequency � and vortex Mach number M are given by

� = ωŴ

a2
= 3Ŵ

2πa2
, M = �a

2c0

.
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We see that for fixed θ the waves radiate outwards (r − c0t constant), for fixed r the waves rotate with

positive orientation (θ− 1
2
�t constant), and at a fixed time t the wave crests are localized along spirals

(r + 2θc0/� constant). This may be compared with a rotating lawn sprinkler.

The outward radiating time-averaged energy flux or intensity is found from equation (8.120) to be

I = 8

9
πρ0c3

0 M7 a

r
. (8.121)

This functional dependence on U 7 in 2D is to be compared with the U 8-law of Lighthill for turbulence

noise (equation 6.69), and forms a confirmation of the estimates for turbulence in the Lighthill analogy.

We have now obtained the solution to leading order. Higher orders may be constructed in a similar

fashion, but we will limit ourselves to the present one. For higher orders more and more equivalent

far fields of higher order multipoles will appear.

We finally note that from a simple calculation the outward radiated 2D power is equal to 16
9
π2ρ0c3

0aM7.

Strictly speaking, this amount of energy per time leaks away from the total energy of the system of

vortices (which scales on ρ0Ŵ
2), and we could try to include a small decay in time of the vortex

strength Ŵ. This is, however, impossible in the present model.

Exercises

a) Determine (using Webster’s horn equation) the right-running wave p(x), with p(0) = p̂0, in an expo-

nential horn with radius a emx .

b) In a hot desert, a man is giving a speech to an audience. The mouth of the man and the ears of the

audience are at a height of y = h = 1.5 m above the flat ground, given by y = 0. The ground is so hot

compared to the air that a vertically stratified uniform temperature profile is established in the air. We

assume for the region relevant here that this profile corresponds to a sound speed which is linear in y.

The sound speed profile is given by: c0(y) = q(1 − εy), where q = 360 m/s and ε = 1
250

m−1. Since

the sound speed gradient is negative the sound waves are refracted upwards and will disappear into the

air. Under the assumptions that the man speaks loud enough, that a typical wave length is small enough

for ray acoustics to be applicable, and that we only consider rays that skim along the ground, what is the

largest distance over which the man can be heard?

c) Determine the suitable modelling assumptions and derive from the wave equations (F.22) and (F.27) the

following generalized Webster equations

A−1 d

dx

(∫∫

A

c2 dσ
d p

dx

)
+ ω2 p = 0, (8.122)

(ρ0 A)−1 d

dx

(
Aρ0

dφ

dx

)
−

(
iω + U

d

dx

)[
c−2

(
iω + U

d

dx

)
φ
]

= 0. (8.123)

d) A large array of acoustically compact equal Helmholtz resonators (all openings in upward direction)

is covered by a top plate of negligible thickness. The plate is solid except for holes positioned exactly

at the openings of the resonator, such that the plate has a uniform

porosity σ ∈ (0, 1) (= the open fraction). A time harmonic acous-

tic field (p, v) eiωt is scattered by plate and Helmholtz resonators.

Find an expression for the impedance of the plate surface. You may

assume the model given by equation (5.41), without the nonlinear

terms to start with. Hint: you may assume that the neck velocity

u′
n = −σ−1(v ·n); use (8.35).

e) Derive the results of section 8.4 for a 2D duct given by |y| < h(εx).



9 Effects of flow and motion

Being a fluid mechanical phenomenon itself, an acoustic wave may be greatly affected by mean flow

effects like convection, refraction in shear, coupling with vorticity, scattering by turbulence, and many

others. We will briefly consider here some of these effects.

9.1 Uniform mean flow, plane waves and edge diffraction

Consider a uniform mean flow in x direction with small irrotational perturbations1 . We have then for

potential φ, pressure p, density ρ and velocity v the problem given by

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
− 1

c2
0

( ∂
∂t

+ U0

∂

∂x

)2

φ = 0,

p = −ρ0

( ∂
∂t

+ U0

∂

∂x

)
φ, p = c2

0ρ, v = ∇φ
(9.1)

where U0, ρ0 and c0 denote the mean flow velocity, density and sound speed, respectively. We assume

in the following that |U0| < c0. The equation for φ is known as the convected wave equation.

9.1.1 Lorentz or Prandtl-Glauert transformation

By the following transformation (in aerodynamic context named after Prandtl and Glauert, but qua

form originally due to Lorentz)

X = x

β
, T = t + M

βc0

X, M = U0

c0

, β =
√

1 − M2, (9.2)

the convected wave equation may be associated to a stationary problem with solution φ(x, y, z, t) =
ψ(X, y, z, T ) satisfying

∂2ψ

∂X2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
− 1

β2c2
0

∂2ψ

∂T 2
= 0, p = −ρ0

β

( 1

β

∂

∂T
+ U0

∂

∂X

)
ψ. (9.3)

For a time harmonic field eiωt φ(x, y, z) = eiωT ψ(X, y, z) or φ(x, y, z) = eiK M X ψ(X, y, z), where

� = ω/β, k = ω/c0 and K = �/c0 = k/β, we have

∂2ψ

∂X2
+ ∂2ψ

∂y2
+ ∂2ψ

∂z2
+ K 2ψ = 0, p = −ρ0

β
eiK M X

(
i�+ U0

∂

∂X

)
ψ (9.4)

The pressure may be obtained from ψ , but since p satisfies the convected wave equation too, we may

also associate the pressure field directly by the same transformation with a corresponding stationary

pressure field. The results are not equivalent, however, and especially when the field contains singu-

larities some care is in order. The pressure obtained directly is no more singular than the pressure of

the stationary problem, but the pressure obtained via the potential is one order more singular due to

the convected derivative, and may be linked to vortex shedding and Kutta condition. See below.

1The assumption of irrotationality may depend on the type of source (1.25b), presence of singularities like edges, etc.
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9.1.2 Plane waves

A plane wave (in x, y-plane) may be given by

pi = a exp
(
−ik

x cos θn + y sin θn

1 + M cos θn

)
= a exp

(
−ikr

cos(θ − θn)

1 + M cos θn

)
(9.5)

where θn is the direction of the normal to the phase plane and x = r cos θ , y = r sin θ . This is

physically not the most natural form, however, because θn is due to the mean flow not the direction

of propagation. By comparison with a point source field far away, or from the intensity vector (c.f.

(F.34,F.35))

〈I〉 = 〈(ρ0v + ρv0)(p/ρ0 + v0 ·v)〉 = 1
2
ρ0ω

[(
β2 Im(φφ∗

x )+ k M|φ|2
)
ex + Im(φφ∗

y)ey

]

=
1
2
ρ0ωk|φ|2

1 + M cos θn

[
(cos θn + M)ex + sin θney

]

we can learn that θs , the direction of propagation (the direction of any shadows, fig. 9.1), is given by

cos θs = M + cos θn√
1 + 2M cos θn + M2

, sin θs = sin θn√
1 + 2M cos θn + M2

. (9.6)

By introducing the transformed angle 2s

cos2s = cos θs√
1 − M2 sin2 θs

= M + cos θn

1 + M cos θn

, (9.7)

sin2s = β sin θs√
1 − M2 sin2 θs

= β sin θn

1 + M cos θn

(9.8)

and the transformed polar coordinates X = R cos2, y = R sin2, we obtain the plane wave

pi = a exp
(
i K M X − i K R cos(2−2s)

)
. (9.9)

9.1.3 Half-plane diffraction problem

By using the foregoing transformation, we obtain from the classical Sommerfeld solution for the half-

plane diffraction problem (see Jones [97]) of a plane wave (9.9), incident on a solid half plane along

y = 0, x < 0 (fig. 9.1), the following solution (see Rienstra [192]) in terms of potential

φ(x, y) = iaβ2

ω(1 − M cos2s)
exp

(
i K M X − i K R

)(
F(Ŵs)+ F(Ŵ s)

)
(9.10)

where

F(z) = eiπ/4

√
π

eiz2

∫ ∞

z

e−it2

dt and Ŵs, Ŵ s = (2K R)1/2 sin 1
2
(2∓2s). (9.11)

An interesting feature of this solution is the following. When we derive the corresponding pressure

p(x, y) = a exp
(
i K M X − i K R

)(
F(Ŵs)+ F(Ŵ s)

)

+ a
e−iπ/4

√
π

M cos 1
2
2s

1 − M cos2s

exp
(
i K M X − i K R

)
sin 1

2
2

( 2

K R

)1/2

, (9.12)
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Figure 9.1 Sketch of scattered plane wave with mean flow

we see immediately that the first part is a solution by itself: it is a multiple of the solution of the

potential. So the second part has to be a solution too. Furthermore, the first part is regular like φ,

while this second part is singular at the scattering edge. As the second part decays for any R → ∞, it

does not describe the incident plane wave, and it may be dropped if we do not accept the singularity

in p at the edge. So the found solution (9.12) is not unique by the existence of an eigensolution pv

pv(x, y) = exp
(
i K M X − i K R

) sin 1
2
2

√
K R

, (9.13)

Without pv , the solution is regular, otherwise it is singular. If we study pv a bit deeper, it transpires

that it has no continuous potential that decays to zero for large |y|. In fact, pv corresponds to the field

of vorticity (in the form of a vortex sheet) that is being shed from the edge. This may be more clear if

we construct the corresponding potential φv for large x , to be compared with (3.66), which is

φv ∼ sign(y) exp
(
− ω

U0

|y| − i
ω

U0

x
)
, pv ∼ 0. (9.14)

In conclusion: we obtain the singular solution by transforming the no-flow solution in potential form,
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Figure 9.2 (ρ0ω/|a|2)P as function of (M, θn).

and the regular solution from the no-flow solution in pressure

form. Their difference is the field of the shed vortex sheet.

This shedding of vorticity costs acoustic energy, so on the one

hand it is a sink of acoustic energy. On the other hand, the shed

vorticies moving near the solid plate produce also sound, and

so the shedding of vorticity is also a source of sound (with the

mean flow as the unlimited source of energy). The net sum of

both can be both negative and positive, depending on M and θn.

Remarkably, the present model problem allows the following

exact expression of the power absorbed by vortex shedding2 .

P = (|a|2/ρ0ω)M cos2 1
2
θn(1 + M cos θn)(2 + 2M cos θn − M) (9.15)

The assumption that just as much vorticity is shed that the pressure field is not singular anymore, is

known as the unsteady Kutta condition. Physically, the amount of vortex shedding is controlled by

the viscous boundary layer thickness compared to the acoustic wave length and the amplitude (and

2This is not only the energy lost into the vortex sheet, but all acoustic energy lost by vortex shedding. For example, it

includes the irrotational hydrodynamic energy (3.67) associated to the vortex sheet. The energy just lost into the vortex sheet

would be P = (|a|2/ρ0ω)M cos2 1
2
θn(1 + M cos θn)(1 + 2M cos θn − M). See Howe [85].
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the Mach number for high speed flow). These effects are not included in the present acoustic model,

therefore they have to be included by an additional edge condition, for example the Kutta condition.

As vorticity can only be shed from a trailing edge, a regular solution is only possible if M > 0. If

M < 0 the edge is a leading edge and we have to leave the singular behaviour as it is.

9.2 Moving point source and Doppler shift

Consider a point (volume) source of strength Q(t) (the volume flux), moving subsonically along the

path x = xs(t) in a uniform acoustic medium. The generated sound field is described by

1

c2
0

∂2 p

∂t2
− ∇2 p = ρ0

∂

∂t

{
Q(t)δ(R(t))

}
, R(t) = x − xs(t). (9.16)

Using the free field Green’s function (equation (6.37) or Appendix E)

G(x, t|y, τ ) = 1

4πc2
0|x − y|

δ
(

t − τ − |x − y|
c0

)
,

the solution for potential ϕ, with p = −ρ0
∂
∂t
ϕ, is given by

4πϕ(x, t) = −
∫ ∞

−∞

Q(τ )

R(τ )
δ
(

t − τ − R(τ )

c0

)
dτ, R = |R|. (9.17)

Using the δ-function integral (C.28)

∫ ∞

−∞
δ(h(τ ))g(τ ) dτ =

∑

i

g(τi)

|h ′(τi )|
, h(τi) = 0 (C.28)

this representation is very elegantly3 [52] reduced to the Liénard-Wiechert potential ([99, p.127])

4πϕ(x, t) = − Qe

Re(1 − Me cosϑe)
, (9.18)

where the subscript e denotes evaluation at time te, given by the equation

c0(t − te)− R(te) = 0. (9.19)

Absolute values are suppressed because we assumed |Me| < 1. Restriction (9.19) is entirely natural

and to be expected. If we trace the observed acoustic perturbation back to its origin, we will find4 it

to be created at time te by the source at position xs(te) and strength Q(te). Therefore, te is usually

called emission time, or retarded time. It is important to note that by its implicit definition (9.19), te is

a function of both t and x.

Other convenient notations used here and below are

M = x′
s/c0, M = |M|, RM cos ϑ = R ·M,

3To appreciate the elegance the reader might compare it with the more traditional derivation as found in [148, p.721] for

the less general problem of a point source moving with constant speed along a straight line.
4A generalization to supersonic motion of the source involves in general a summation, according to (C.28), over more

than one solution of equation (9.19). See [125] for an application with the Concorde aircraft.
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where M and M are, respectively, the scalar and vectorial Mach number of the source, while ϑ is

the angle between the source velocity vector and the observer’s position, seen from the source. The

combination M cosϑ is often also denoted by Mr .

By applying the chain rule to equation (9.19) we obtain the identities

∂te

∂t
= 1

1 − Me cos ϑe

,
∂Re

∂t
= − c0 Me cos ϑe

1 − Me cosϑe

,

∂

∂t
(Re Me cosϑe) = Re ·M ′

e − c0 M2
e

1 − Me cosϑe

.

After differentiation of equation (9.18) with respect to time, we finally have

4πp(x, t) = ρ0Q ′
e

Re(1 − Me cosϑe)2
+ ρ0Qe

Re ·M ′
e + c0 Me(cos ϑe − Me)

R2
e (1 − Me cosϑe)3

. (9.20)

The O(R−1
e )-part dominates the far field, while the O(R−2

e )-part dominates the near field [126]. A

typical effect of motion is that both the pressure and the potential fields are increased by the “Doppler

factor” (1− Me cosϑe)
−1, but not with the same power. Furthermore, more Doppler factors appear for

higher order multipole sources. (See Crighton [38].)

The name “Doppler factor” is due to its appearance in the well-known frequency shift of moving

harmonic sources. Assume

Q(t) = Q0 eiω0t

with frequency ω0 so high that we can define an instantaneous frequency ω for an observer of (9.20)

at position x:

ω(t) = d

dt
(ω0te) = ω0

1 − Me cos ϑe

. (9.21)

This describes the Doppler shift of frequency ω0 due to motion. Expression (9.20) is quite general.

The more common forms are for a straight source path with constant velocity xs(t) = (V t, 0, 0) in

which case Me is constant and x′′
s = 0.

Analogous to the above point volume source, or monopole, we can deduce the field of a moving point

force, or dipole. For this we return to the original linearized gas dynamics equations in ρ, v, and p

with external force F(t)δ(x − xs(t)), and eliminate ρ and v to obtain:

1

c2
0

∂2 p

∂t2
− ∇2 p = −∇ ·

{
F(t)δ(R(t))

}
. (9.22)

Following the same lines as in the monopole problem we have the solution

4πp(x, t) = −∇ ·
( Fe

Re(1 − Me cosϑe)

)
(9.23)

Here we see that a rotating force is not the same as a rotating ∇ · F -field, since te = te(x, t). By

application of the chain rule to equation (9.19) we derive:

∇ Re = −c0∇te = Re

Re(1 − Me cosϑe)
,

∇(Re Me cosϑe) = Me − Re

Re(1 − Me cos ϑe)

( Re ·M ′
e

c0

− M2
e

)
,
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so that we have the general expression for a moving point force:

4πp(x, t) = Re · F′
e − c0 Me ·Fe

c0 R2
e (1 − Me cosϑe)

2
+ (Re ·Fe)

Re ·M ′
e + c0(1 − M2

e )

c0 R3
e (1 − Me cos ϑe)

3
. (9.24)

The O(R−1
e )-part dominates the far field, while the O(R−2

e )-part dominates the near field [126].

It should be noted that the above distinction between a point source Q and a point force F is rather

idealized. In any real situation Q and F are coupled, since in general a real mass source also produces

a momentum change (see [52]).

9.3 Rotating monopole and dipole with moving observer

An application of the previous section is a model for (subsonic) propeller noise, due to Succi and

Farassat [61, 230].

Two main sources of sound may be associated to a moving propeller blade: the displacement of fluid

by the moving body leading to thickness noise, and the moving lift force distribution leading to loading

noise. See the next section 9.4, equation (9.28). A description of the loading noise is obtained by

representing the propeller blade force by an equivalent distribution of point forces F j , followed by a

summation over j of the respective sound fields given by equation (9.24).

The thickness noise is a bit more involved. It can be shown (equation 9.32) that a compact moving

body of fixed volume V generates a sound field, due to its displacement of fluid, given by the time

derivative of equation (9.16) while Q = V , with solution the time derivative of equation (9.20).

4πpth(x, t) = ρ0V
∂2

∂t2

1

Re(1 − Me cos ϑe)
.

(Equivalent forms in terms of spatial derivatives are also possible; see for example [24, 61].) By

discretising the propeller blade volume by an equivalent collection of volumes V j , the thickness noise

is found by a summation over j of the respective sound fields.

The method is attractive in its relative simplicity, and easy programming. The formulas are laborious,

however. Therefore, to illustrate the method, we will work out here the related problems of the far

field of a subsonically rotating and translating monopole Q = q0 and dipole f0. The position of the

point source, rotating in the x, y-plane along a circle of radius a with frequency ω, and translating

along the z-axis with constant velocity U (figure 9.3), is given by

xs(t) = (a cosωt, a sinωt,Ut).

It is practically of most interest to consider an observer moving with the source, with forward speed

U . Therefore, we start with the field of the source, given in the stationary medium by equation (9.20),

and substitute for position vector x the position of a co-moving observer xo = (xo, yo, zo), given in

spherical coordinates by

xo(t) = (r cos φ sinϑ, r sinφ sinϑ, r cosϑ + Ut).

With R(o)
e = xo(t)− xs(te) we obtain the relations

R(o)
e ·Me = MR r sinϑ sin(φ − ωte)+ MF r sinϑ + M2

F R(o)e ,

R(o)
e ·M ′

e = c0 M2
R

(
1 − r

a
sinϑ cos(φ − ωte)

)
,

M2
e = M2

R + M2
F , where MR = ωa/c0, MF = U/c0.
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Figure 9.3 Trajectory of point, moving along helical path xs (t).

The “far field” denotes the asymptotic behaviour for (a/r) → 0. Since

c2
0(t − te)

2 = (R(o)e )2 = r2 − 2ar sinϑ cos(φ − ωte)+ a2 + 2Ur(t − te) cosϑ + U 2(t − te)
2

and noting that asymptotically t − te = O(r/c0), we have for a/r → 0

te = t − r̃

c0

+ ã

c0

sinϑ cos(φ − ωt + kr̃)+ . . .

where k = ω/c0 and

r̃ = r
MF cosϑ +

√
1 − M2

F sin2 ϑ

1 − M2
F

, ã = a
1√

1 − M2
F sin2 ϑ

.

With this we find:

R(o)e ≃ r̃ − ã sinϑ cos(φ − ωt + kr̃)

Me cosϑe ≃
(1 − M2

F )MR sin ϑ sin(φ − ωt + kr̃)+ MF cosϑ + M2
F

√
1 − M2

F sin2 ϑ

MF cos ϑ +
√

1 − M2
F sin2 ϑ

Altogether in equation (9.20):

4πp(x, t) = ρ0c0q0

R2
e (1 − Me cos ϑe)

3

( (R(o)
e ·M ′

e

c0

+ Me cosϑe − M2
e

)

≃ −ρ0c0q0

ar

(1 − M2
F )

2 M2
R sin ϑ cos(φ − ωt + kr̃)

(
MF cosϑ +

√
1 − M2

F sin2 ϑ
)2(

1 − Me cos ϑe

)3
(9.25)

We do have a O(1/r) decay, and in spite of the dQ(t)/dt = 0, a nearly harmonic signal. Note the

2-lobe radiation pattern, i.e. 2 maxima perpendicular to the axis of rotation where sin ϑ = 1, and

minima in the direction of the axis where sinϑ = 0.
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Figure 9.4 Time history of sound pressure generated by spiralling point source (left) and point force (right).

The rotating point force will portray a very simple propeller model. We assume the propeller to be

concentrated in one point (this is a plausible approximation for the lowest harmonics) by a point force

equal to the blade thrust force (the pressure jump across the blade integrated over the blade), in a

direction perpendicular to the blade. Furthermore, the blade surface will practically coincide with the

screw plane described by the velocity of a point on the blade V = U ez + ωa eθ .

So normal to this plane we have the lift force

F(t) = f0√
U 2 + (ωa)2

(U sinωt,−U cosωt, ωa) (9.26)

In figure 9.4 plots are made of the time history of the sound pressure generated by the above point

source and point force, for the following parameters: U = 145 m/s, c0 = 316 m/s, a = 1.28 m,

ω = 2π ·17 /s, f0 = 700 N, ρ0 = 1.2 kg/m3, q0 = 1.8 m3/s, for an observer moving with and in the

plane of the source at a distance x0 = 2.5 m. No far-field approximation has been made.

9.4 Ffowcs Williams & Hawkings equation for moving bodies

Curle (6.85) showed that the effect of a rigid body can be incorporated in the aero-acoustical ana-

logy of Lighthill as additional source and force terms Qm and F. This approach has been generalized

by Ffowcs Williams and Hawkings who derived [65] a very general formulation valid for any mov-

ing body, enclosed by a surface S(t). Their derivation by means of generalized functions (surface

distributions, section C.2.8) is an example of elegance and efficiency. Although originally meant to

include the effect of moving closed surfaces into Lighthill’s theory for aerodynamic sound, it is now

a widely used starting point for theories of noise generation by moving bodies like propellers, even

when turbulence noise is of little or no importance.
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There is no unique relation between a source and its sound field, because a given field can be created

by infinitely many equivalent but different sources (section 2.6.1). Therefore, there is no unique way

to describe the effect of a surface S(t) in terms of an acoustic source distribution, and a simple and

transparent choice is preferable. The choice put forward by Ffowcs Williams and Hawkings was both

simple and transparent: just force any flow variable to vanish inside the enclosed volume. The resulting

equations are automatically valid everywhere, and use can be made of the free field Green’s function.

Consider a finite volume V = V(t) with sufficiently smooth surface S = S(t), moving continuously

in space. Introduce a (smooth) function f (x, t) such that

f (x, t)





< 0 if x ∈ V(t),

= 0 if x ∈ S(t),

> 0 if x 6∈ V(t),

but otherwise arbitrary. If we multiply any physical quantity by the Heaviside function H ( f ) – such

as ρ ′ H ( f ) – we obtain a new variable which vanishes identically within V because H ( f ) = 1 in

the fluid, and H ( f ) = 0 inside V. Since ∇ f | f =0 is directed normal outwards from V, the outward

normal n of S is given by (section A.3).

n(x, t) = ∇ f

|∇ f |

∣∣∣∣
f =0

.

Let the surface S(t) be parametrized in time and space, by coordinates5 (t;λ,µ). A surface point

xS(t) ∈ S (consider λ and µ fixed), moving with velocity U = .
xS , remains at the surface for all time,

so f (xS(t), t) = 0 for all t , and therefore

∂ f

∂t
= − .

xS ·∇ f = −(U ·n)|∇ f |.

It is important to note that the normal velocity (U ·n) is a property of the surface, and is independent

of the choice of f or parametrization. We now start the derivation by multiplying the exact equations

(1.1,1.2) of motion for the fluid by H ( f ):

H ( f )
[∂ρ ′

∂t
+ ∇ ·(ρv)

]
= 0,

H ( f )
[ ∂
∂t
(ρv)+ ∇ ·(P + ρvv)

]
= 0,

where ρ ′ = ρ − ρ0 and ρ0 is the mean level far away from the body. Although the original equations

were only valid outside the body, the new equations are trivially satisfied inside V, and so they are valid

everywhere. By reordering the terms, and using the identity ∂
∂t

H ( f ) = −U ·∇ H ( f ), the equations

can be rewritten as equations for the new variables ρ ′ H ( f ) and ρvH ( f ) as follows.

∂

∂t
[ρ ′ H ( f )] + ∇·[ρvH ( f )] = [ρ0U + ρ(v − U)]·∇ H ( f ),

∂

∂t
[ρvH ( f )] + ∇·[(ρvv + P)H ( f )] = [ρv(v − U)+ P]·∇ H ( f ).

5When S(t) is the surface of a solid and undeformable body, it is natural to assume a spatial parametrization which is

materially attached to the surface. This is, however, not necessary. Like the auxiliary function f , this parametrization is not

unique, but that will appear to be of no importance.
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Using the same procedure (subtracting the time-derivative of the mass equation from the divergence

of the momentum equation) as for Lighthill’s analogy (2.65), we find the Ffowcs Williams-Hawkings

equations [65]:

∂2

∂t2
ρ ′ H ( f )− c2

0∇2ρ ′ H ( f ) = ∇·

∇·

[(
ρvv − τ + (p′ − c2

0ρ
′) I

)
H ( f )

]


+ ∂

∂t

[(
ρ(v − U)+ ρ0U

)
·∇ H ( f )

]
− ∇·

[(
ρv(v − U)+ p′ I − τ

)
·∇ H ( f )

]
. (9.27)

The sources at the right hand side consist of the double divergence of the common quadrupole-type

Lighthill stress tensor, and a time derivative and divergence of sources only present at the surface

f = 0. Of course, the right hand side contains all the unknowns, and in principle this equation (9.27)

is not simpler to solve than the original Navier-Stokes equations. However, as with Lighthill’s analogy,

the source terms are of aerodynamic nature, and can be solved separately, without including the very

small acoustic back-reaction.

Very often, Lighthill’s stress tensor ρvv − τ + (p′ − c2
0ρ

′) I and the shear stresses at the surface are

negligible. Moreover, if the surface S is solid such that v ·n = U ·n, and we change from density

to pressure as our field variable, and define p̄ ′ = p′ H ( f ), we have a reduced form of the Ffowcs

Williams-Hawkings equation, which is widely used for subsonic propeller and fan noise (no shocks)

[61]

1

c2
0

∂2

∂t2
p̄ ′ − ∇2 p̄ ′ = ∂

∂t

[
ρ0U ·n|∇ f |δ( f )

]
− ∇·

[
p′n|∇ f |δ( f )

]
. (9.28)

The first source term is of purely geometrical nature, and describes the noise generated by the fluid

displaced by the moving body. The associated field is called thickness noise. The second part depends

on the normal surface stresses due to the pressure distribution, and describes the noise generated by

the moving force distribution. The associated field is called loading or lift noise.

If we know the pressure distribution along the surface, we can in principle solve this equation, in a way

similar to the problem of the moving point source of section 9.2. Let us consider first the following

prototype problem

1

c2
0

∂2

∂t2
ϕ − ∇2ϕ = Q(x, t)|∇ f |δ( f ). (9.29)

By using the free field Green’s function we can write

4πϕ(x, t) =
∫ ∫∫∫

Q(y, τ )
R

δ(t − τ − R/c0)|∇ f |δ( f ) d y dτ,

where R = |x − y(τ )|, the distance between observer’s and source’s position. Noting that |∇ f |δ( f )

is just equivalent to the surface distribution of S(t) (equation C.38), we can integrate δ( f ) (equation

C.37 or C.39) and write

4πϕ(x, t) =
∫ ∫∫

S(t)

Q(y, τ )
R

δ(t − τ − R/c0) dσ dτ.

The integral over τ can be evaluated by noting that any contributions come from the solution τ = te
of the emission-time equation (the zero of the argument of the remaining δ-function), given by

c0(t − τ)− R = 0,
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which describes (for given x, t) a surface in (y, τ )-space, symbolically denoted by S(te). Analogous

to the point source field (9.18) we have then

4πϕ(x, t) =
∫∫

S(te)

Qe

Re(1 − Me cosϑe)
dσ. (9.30)

As before, subscript e denotes evaluation at emission time te, and M cosϑ is the component of the

vectorial Mach number of the source in the direction of the observer (in some literature also denoted

by Mr ). From this auxiliary solution we can now formulate a solution for p̄ ′ as follows

4π p̄ ′(x, t) = ∂

∂t

∫∫

S(te)

ρ0Ue ·ne

Re(1 − Me cosϑe)
dσ − ∇·

∫∫

S(te)

pene

Re(1 − Me cos ϑe)
dσ. (9.31)

Extreme care should be taken in interpreting this equation, because for any x and t the emission time

te varies over the source region, while at the same time the source varies its position! Other forms

of the solution are available which might be easier to handle in certain applications; see e.g. Farassat

[60, 61].

It is therefore interesting to consider the compact limit, in which case the typical wave length is much

longer than the body size. The emission time does not vary significantly over the source region, and

Re and Me cos ϑe refer only to a single typical source coordinate xs , for example the centre of gravity.

The source becomes equivalent to a point source (section 9.2,9.3).

A particularly interesting form (Farassat [61]) for the thickness noise component is found by writing

the surface integral as a volume integral. Using

ρ0U ·n|∇ f |δ( f ) = ∂

∂t
ρ0(1 − H ( f )),

and noting that the function 1 − H ( f ) equals unity inside the body V and zero elsewhere, we have

for the thickness noise component of equation (9.31)

∂

∂t

∫∫

S(te)

ρ0Ue ·ne

Re(1 − Me cosϑe)
dσ = ∂2

∂t2

∫∫∫

V(te)

ρ0

Re(1 − Me cosϑe)
d y.

Since the volume integral of the constant 1 is just V , the volume of V, and denoting the total force of

the fluid on the body by

F(t) =
∫∫

S(t)

p·n dσ,

we have the compact limit of equation (9.31) (see also section 9.3)

4π p̄ ′(x, t) ≃ ∂2

∂t2

( ρ0V

Re(1 − Me cosϑe)

)
− ∇·

( Fe

Re(1 − Me cos ϑe)

)
. (9.32)

Exercises

a) Evaluate the expressions for the acoustic field of the propeller of equation 9.26 without forward speed

(U = 0) and find the approximation for the far field. What can you tell about the typical lobes in the

radiation pattern?

b) Evaluate the expressions for the acoustic field of a moving point volume source (9.20) and point force

(9.24) for the windtunnel situation: a moving source xs = V t ex and a moving observe x = a + V t ex .



A Integral laws and related results

A.1 Reynolds’ transport theorem

For an arbitrary single-valued scalar function F = F(x, t) with continuous derivatives, and an arbit-

rary control volume V ∗(t)with surface S∗(t), outward-pointing unit-normal n, and b the local velocity

of S∗, the following integral relation holds:

d

dt

∫∫∫

V ∗

F dx =
∫∫∫

V ∗

∂F

∂t
dx +

∫∫

S∗

F (b·n) dσ. (A.1)

This theorem, known as Reynolds’ Transport Theorem (see equation C.40), is used to translate integral

conservation laws into differential conservation laws. Conservation laws such as mass conservation

are understood most easily when they are applied to a so-called material volume V = V (t) (enclosed

by the surface S = S(t)), which is a volume contained in the fluid and with no fluid entering or

leaving it. The concept arises when considering a fluid particle which is large in number of molecules,

but small compared to the macroscopic scales in the problem. For a certain –diffusion controlled–

period of time the particle keeps its identity, and can be labelled. In such a case we have for the fluid

velocity v at surface S

(b·n) = (v ·n).

Hence, for any property of the fluid F = F(x, t) with continuous derivatives, Reynold’s theorem

becomes:

d

dt

∫∫∫

V

F dx =
∫∫∫

V

∂F

∂t
dx +

∫∫

S

F (v ·n) dσ, (A.2)

A.2 Conservation laws

The conservation laws (mass, momentum, energy) in integral form are more general than in differ-

ential form because they can be applied to flows with discontinuous properties. We will give here a

summary of the basic formulae. A detailed derivation may be found in [171] or [234]. Consider a

material volume V with surface S.

Mass conservation (F = ρ):

d

dt

∫∫∫

V

ρ dx = 0. (A.3)

Momentum conservation (F = ρvi ):

d

dt

∫∫∫

V

ρvi dx =
∫∫∫

V

fi dx −
∫∫

S

Pi j n j dσ. (A.4)
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Energy conservation (F = ρ(e + 1
2
v2), v2 = vivi ):

d

dt

∫∫∫

V

ρ(e + 1
2
v2) dx =

∫∫∫

V

fivi dx −
∫∫

S

Pi jv j ni dσ −
∫∫

S

qi ni dσ. (A.5)

Consider now an arbitrary control volume V ∗(t) with surface S∗(t) and b the local velocity of S∗. By

applying (A.3) and (A.1) with F = ρ we find:

d

dt

∫∫∫

V ∗

ρ dx =
∫∫∫

V ∗

∂ρ

∂t
dx +

∫∫

S∗

ρbini dσ (A.6)

∫∫∫

V

∂ρ

∂t
dx = −

∫∫

S

ρvi ni dσ. (A.7)

At any given instant we may identify V ∗ with a given material volume V . Hence (A.7) can be used to

eliminate the first integral on the right-hand side of (A.6) to obtain:

d

dt

∫∫∫

V ∗

ρ dx =
∫∫

S∗

ρ(bi − vi )ni dσ. (A.8)

This can be applied to any volume V ∗ and in particular to a fixed volume (bi = 0). In a similar way

we have for the momentum:

d

dt

∫∫∫

V ∗

ρvi dx +
∫∫

S∗

ρvi (v j − b j )n j dσ =
∫∫∫

V ∗

fi dx −
∫∫

S∗

Pi j n j dσ (A.9)

and for the energy:

d

dt

∫∫∫

V ∗

ρ(e + 1
2
v2) dx +

∫∫

S∗

ρ(e + 1
2
v2)(vi − bi )ni dσ

=
∫∫∫

V ∗

fivi dx −
∫∫

S∗

Pi j v j ni dσ −
∫∫

S∗

qi ni dσ. (A.10)

For the entropy s we further find:

d

dt

∫∫∫

V ∗

ρs dx +
∫∫

S∗

ρs(vi − bi )ni dσ +
∫∫

S∗

1

T
qi ni dσ > 0 (A.11)

where the equality is valid when the processes in the flow are reversible.

A.3 Normal vectors of level surfaces

A convenient way to describe a smooth surface S is by means of a suitable smooth function S(x),
where x = (x, y, z), chosen such that the level surface S(x) = 0 coincides with S. So S(x) = 0 if

and only if x ∈ S. Then ∇S at S = 0 is a normal of S, provided ∇S 6= 0. This is seen as follows.

Consider a point x0 and a neighbouring point x0 + h, both on the surface S. Expand S(x0 + h) into a

Taylor series in h. We then obtain

S(x0 + h) = S(x0)+ h·∇S(x0)+ O(h2) ≃ h·∇S(x0) = 0.
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Since in the limit for |h| → 0 the vector ∇S(x0) is normal to the tangent vector h, it is normal to the

surface S. Furthermore, the unit normal vector nS = ∇S
|∇S| (at S = 0) is directed from the S < 0-side

to the S > 0-side. If we expand S(x) near x0 ∈ S we have S(x) = (x − x0)·∇S(x0)+ . . . , so, near

the surface, S(x) varies, to leading order, only in the coordinate normal to the surface.

A.4 Vector identities and theorems

Let ψ,φ and a, b, c, d, v denote well-behaved scalar functions and vector fields.

a ·(b×c) = b·(c×a) = c·(a×b) (A.12a)

a×(b×c) = b(a·c)− c(a ·b) (A.12b)

(a×b)·(c×d) = (a·c)(b·d)− (a·d)(b·c) (A.12c)

∇(a ·b) = a·∇b + b·∇a + a×(∇×b)+ b×(∇×a) (A.12d)

a ·∇(b·c) = b·(a ·∇c)+ c·(a ·∇b) (A.12e)

∇ ·(a×b) = b·(∇×a)− a·(∇×b) (A.12f)

∇×(a×b) = a(∇·b)− b(∇·a)− a ·∇b + b·∇a (A.12g)

∇×(φa) = (∇φ)×a + φ(∇×a) (A.12h)

∇×(ψ∇φ) = (∇ψ)×(∇φ) (A.12i)

(v ·∇)v = ∇( 1
2
v2)+ (∇×v)×v (A.12j)

Note that ∇·(∇×v) = 0 and ∇×(∇φ) = 0.

Let� denote a three-dimensional volume with volume element dV , and ∂� a closed two-dimensional

surface bounding � with area element dS and associated unit outward vector n. Then we have the

following integral relations.

Gauss’ divergence theorem:

∫

�

∇·v dV =
∮

∂�

v ·n dS (A.13a)

∫

�

∇φ dV =
∮

∂�

φ n dS (A.13b)

∫

�

∇×v dV =
∮

∂�

n×v dS (A.13c)

Green’s first identity:

∫

�

(
φ∇2ψ + ∇φ ·∇ψ)

dV =
∮

∂�

φ∇ψ ·n dS (A.13d)

Green’s second identity:

∫

�

(φ∇2ψ − ψ∇2φ) dV =
∮

∂�

(φ∇ψ − ψ∇φ)·n dS (A.13e)

Let S denote a smooth orientable surface, bounded by the positively oriented contour C with line

element dℓ. The normal n to S is defined according to the right-hand-screw rule applied to C. Then

Stokes’ theorem:

∫

S

(∇×v)·n dS =
∮

C

v ·dℓ (A.14a)

∫

S

n×∇φ dS =
∮

C

φdℓ (A.14b)



B Order of magnitudes: O and o.

In many cases it is necessary to indicate in a compact way the behaviour of some function f (x), of

variable or parameter x , as x tends to some limit (finite or infinite). The usual way to do this is by

comparing with a simpler function g(x). For this we have the order symbols O and o. When f is

comparable with or dominated by g, we have

Definition B.1 f (x) = O(g(x)) as x → a

means, that there is a constant C and an interval (a − h, a + h)

such that for all x ∈ (a − h, a + h): | f (x)| 6 C|g(x)|.

When x ↓ a the interval is one-sided: (a, a + h); similarly for x ↑ a. For the behaviour at infinity we

have

Definition B.2 f (x) = O(g(x)) as x → ∞
means, that there is a constant C and an interval (x0,∞)

such that for all x ∈ (x0,∞): | f (x)| 6 C|g(x)|.

Similarly for x → −∞. When f is essentially smaller than g we have

Definition B.3 f (x) = o(g(x)) as x → a

means, that for every positive δ there is an interval (a − η, a + η)

such that for all x ∈ (a − η, a + η): | f (x)| 6 δ|g(x)|.

with obvious generalizations to x ↓ a, x → ∞, etc.

Theorem B.1 If lim
f (x)

g(x)
exists, and is finite, then f (x) = O(g(x)).

Theorem B.2 If lim
f (x)

g(x)
= 0, then f (x) = o(g(x)).

Note that f = o(g) implies f = O(g), in which case the estimate O(g) is only an upper limit, and

not as informative as the “sharp O”, defined by

Definition B.4 f (x) = Os(g(x)) means: f (x) = O(g(x)) but f (x) 6= o(g(x).
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C.1 Fourier transforms

The linearity of sound waves allows us to build up the acoustic field as a sum of simpler solutions of

the wave equation. The most important example is the reduction into time harmonic components, or

Fourier analysis. This is attractive in several respects. Mathematically, because the equation simplifies

greatly if the coefficients in the wave equation are time-independent, and physically, because the

Fourier spectrum represents the harmonic perception of sound.

Consider a function p(t) with the following (sufficient, not necessary) conditions [28, 98, 121, 173,

256].

– p is continuous, except for at most a finite number

of discontinuities where p(t) = 1
2
[p(t + 0)+ p(t − 0)].

– |p(t)| and |p(t)|2 are integrable.

Then the Fourier transform p̂(ω) of p(t) is defined as the complex function

p̂(ω) = Fp(ω)
def== 1

2π

∫ ∞

−∞
p(t) e−iωt dt, (C.1)

while according to Fourier’s inversion theorem, p(t) is equal to the inverse Fourier transform

p(t) = F −1
p̂
(t)

def==
∫ ∞

−∞
p̂(ω) eiωt dω. (C.2)

The Fourier transform and its inverse are closely related. Apart from a sign change and a factor 2π , it

is the same operation: F −1
p̂
(t) = 2πF p̂(−t). It is important to note that slight differences with respect

to the factor 1/2π , frequency ω = 2π f , and the sign of the phase iωt are common in the literature.

Especially the prevailing e±iωt -convention should always be checked when referring or comparing to

other work.

Some examples of Fourier transforms are:

1

2π

∫ ∞

−∞
H (t) e−αt e−iωt dt = 1

2π(α + iω)
, (C.3a)

1

2π

∫ ∞

−∞

H (t)√
t

e−αt e−iωt dt = 1

2
√
π

√
α + iω

, (C.3b)

1

2π

∫ ∞

−∞

1

1 + t2
e−iωt dt = 1

2
e−|ω|, (C.3c)

1

2π

∫ ∞

−∞
e− 1

2
t2

e−iωt dt = 1√
2π

e− 1
2
ω2

, (C.3d)
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where α > 0, the ordinary square root is taken, and H (t) denotes Heaviside’s unit step function

(C.29), which is H (t) = 1 for t > 0 and H (t) = 0 for t < 0.

Although it may seem to be no serious restriction to assume that a physically relevant signal p(t)

vanishes at t = ±∞, we deal in practice with simplified models, yielding expressions for p(t) which

do not decay at infinity (e.g. a constant, sin(ω0t)). So we have on the one hand the “real” p(t) which

is Fourier-transformable, and on the other hand the approximate “model” p(t), which is not always

Fourier-transformable. Is there a way to approximate, or at least get an idea of, the real Fourier trans-

form, using the approximate p(t)? One way is to assume p to vanish outside a certain large interval

[−N, N ], as for example:

1

2π

∫ N

−N

e−iωt dt = sinωN

πω

1

2π

∫ N

−N

sin(ω0t) e−iωt dt = i

2π

(sin(ω0 + ω)N

ω0 + ω
− sin(ω0 − ω)N

ω0 − ω

)

We see a large maximum (∼ N/π ) depending on N near the dominating frequencies, and for the

other frequencies an oscillatory behaviour, also depending on N , that is difficult to interpret. This is

too vague and too arbitrary for general use. Therefore, a mathematically more consistent and satisfying

approach, not depending on the arbitrary choice of the interval size, will be introduced later in terms

of generalized functions.

Derivative

Since a derivative to t corresponds to a multiplication by iω as follows

d

dt
p(t) =

∫ ∞

−∞
iω p̂(ω) eiωt dω, (C.4)

the wave equation reduces to the Helmholtz equation

∇2ϕ − 1

c2

∂2ϕ

∂t2
= 0

F.T.=⇒ ∇2ϕ̂ + ω2

c2
ϕ̂ = 0. (C.5)

Further reduction is possible by Fourier transformation in space variables.

More dimensions and Hankel transform

Fourier transforms in n space dimensions is usually denoted as

f̂ (k) = 1

(2π)n

∫

R
n

f (x) eik·x dx, f (x) =
∫

R
n

f̂ (k) e−ik·x dk. (C.6)

The Hankel transform Hm(φ;ρ) of a function φ(r), given by

Hm(φ;ρ) = 1

2π

∫ ∞

0

φ(r)Jm(ρr)r dr (C.7)
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arises naturally when the 2D Fourier transform of a function f (x) is re-written in polar coordinates.

f̂ (k) = 1

4π2

∫∫

R
2

f (x) eik·x dx = 1

4π2

∫ ∞

0

∫ 2π

0

∞∑

m=−∞
fm(r) e−imθ eiρr cos(θ−α) r dθdr

= 1

2π

∞∑

m=−∞

∫ ∞

0

im fm(r)Jm(ρr) e−imα r dr =
∞∑

m=−∞
im e−imα Hm( fm;ρ) (C.8)

where x = (r cosϑ, r sinϑ), k = (ρ cos α, ρ sin α),

f (x) =
∞∑

m=−∞
fm(r) e−imϑ

and use is made of equation (D.63).

Multiplication and convolution

Fourier transformation is basically a linear operation and little can be said about other than linear

combinations of transformed functions. Only for multiplication with powers of ω we have

∫ ∞

−∞
(iω)n p̂(ω) eiωt dω = dn

dtn
p(t). (C.9)

For multiplication with a general q̂(ω) we find the convolution product of p(t) and q(t), also known

as the Convolution Theorem

(p∗q)(t) = 1

2π

∫ ∞

−∞
p(t ′)q(t − t ′) dt ′ =

∫ ∞

−∞
p̂(ω)q̂(ω) eiωt dω. (C.10)

Note that in terms of generalized functions, to be introduced below, result (C.9) for the product with

ωn is a special case of the convolution theorem. A particular case is Parseval’s theorem, obtained by

taking1 q(t ′) = p∗(−t ′) and t = 0:

∫ ∞

−∞
| p̂(ω)|2 dω = 1

2π

∫ ∞

−∞
|p(t ′)|2 dt ′ (C.11)

which is in a suitable context a measure of the total energy of a signal p(t).

Poisson’s summation formula

Intuitively, it is clear that the high frequencies relate to the short time behaviour, and the low fre-

quencies to the long time behaviour. An elegant result due to Poisson is making this explicit.

∞∑

n=−∞
p(λn) = 2π

λ

∞∑

n=−∞
p̂
(2πn

λ

)
. (C.12)

Sampling with large steps (λ large) of p yields information about the low part of the spectrum and

vice versa.

1z∗ = x − i y denotes the complex conjugate of z = x + i y.
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Reality condition

Although p̂(ω) is complex, the corresponding p(t) is in any physical context real. Therefore, not any

p̂(ω) can occur. A given p̂(ω) corresponds to a real signal p(t) if it satisfies the reality condition

p̂(−ω) = p̂(ω)∗. (C.13)

This is just the consequence of p(t), given by equation (C.2), being identically equal to its complex

conjugate.

C.1.1 Causality condition

The wave equation and the equation of motion do not impose a direction for the time, if dissipation

effects are neglected. The fact that the sound should be produced before we observe it (causality)

is not a property automatically implied by our equations, and it should be imposed to the solution.

The problem is simple for an initial value problem, where it suffices to require a zero field before the

switch-on time. However, when we consider a time-harmonic solution, or in general based on Fourier

analysis, it is not obvious any more because we assume the solution to be built up from stationary

oscillations. Stationary means that it exists forever and has always existed. In such a case causality,

i.e. the difference between cause and effect, is not readily clear. It is therefore of interest to investigate

conditions for the Fourier transform that guarantees a causal signal.

No physical process can exist for all time. A process p(t) that starts by some cause at some finite time

t = t0, while it vanishes before t0, is called causal. The corresponding Fourier transform

p̂(ω) = 1

2π

∫ ∞

t0

p(t) e−iωt dt (C.14)

has the property that p̂(ω) is analytic2 in the lower complex half-space

Im(ω) < 0. (C.15)

So this is a necessary condition on p̂ for p to be causal. Examples are the exponentially decaying

functions, switched on at t = 0, of equations (C.3a) and (C.3b). The Fourier transforms are non-

analytic in the upper half-plane (singularities at ω = iα and a branch cut from iα up to i∞), but are

indeed analytic in the half-plane Im(ω) < α.

A sufficient condition3 is the following causality condition [173].

Theorem C.1 (Causality Condition)

If: (i) p̂(ω) is analytic in Im(ω) 6 0, (ii) | p̂(ω)|2 is integrable along the real axis, and (iii) there is a

real t0 such that eiωt0 p̂(ω) → 0 uniformly with regard to arg(ω) for |ω| → ∞ in the lower complex

half plane, then: p(t) is causal, and vanishes for t < t0.

2Infinitely often differentiable in the complex variable ω.
3Cauchy’s theorem [106] for analytic functions says that if f is analytic in the inner-region of a closed contour C in the

complex plane, the integral of f along C is equal to zero:
∫

C f (z)dz = 0. Under the conditions stated in theorem (C.1)

(p.232) the function p̂(ω) exp(iωt) is analytic in the lower-half complex ω-plane. So its integral along the closed contour

consisting of the real interval [−R, R] and the semi-circle ω = R eiθ , −π <θ < 0, is equal to zero.

Let R →∞ while t < 0 (= t0; the case of a general t0 is similar).

The factor eiωt = ei Re(ω)t e− Im(ω)t decays exponentially fast to zero in the lower complex ω-plane because − Im(ω)t < 0.

Hence, the contribution from the large semi-circle becomes exponentially small and vanishes. So the part along the real axis

is also zero. However, this is just p(t), the inverse Fourier transform of p̂.
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(Note that the lower complex half-space becomes the upper half-space if the opposite Fourier sign

convention is taken.) Consider as a typical example the inverse transform of equation (C.3a). When

t > 0 the exponential factor eiωt = ei Re(ω)t e− Im(ω)t decays in the upper half plane, so the contour can

be closed via the upper half plane, resulting in 2π i times the residue4 of the pole in iα. When t < 0

the contour can be closed via the lower half plane, with zero result because the integrand is analytic

there: causal as it should be.

∫ ∞

−∞

eiωt

2π(α + iω)
dω =

{
e−αt if t > 0,

0 if t < 0.

It should be noted that in the limit of no damping (α ↓ 0) the singularity of (C.3a) and (C.3b) at

ω = iα moves to ω = 0, which is on the real axis. This is a bit of a problem if we are interested in the

inverse transform5, because the real ω-axis is just the contour of integration, and a pole there would

make the result of the integral ambiguous. The integral is to be interpreted via a suitable deformation6

of the contour, but this is either over or under the singularity, and the results are not the same. So,

without further information this would leave us with two possible but different answers!

We do know, however, that this singularity comes from the complex upper half, so we have to indent

the contour under the pole. This is exactly in agreement with the argument of causality: a causal

signal has a Fourier transform that is analytic in the lower complex half-plane, so it is safe to indent

the contour into the lower half-plane. The singularity is to be considered to belong to the upper half-

plane.

This example is typical of the more general case of a signal p(t), described via the inverse transform of

its Fourier transform. If it occurs that, due to inherent idealizations of the model, this Fourier transform

has singularities along the real ω axis, the causality condition tells us how to deal with this problem.

Consider the following example. The transformed harmonic-like signal

p̂(ω) = −ω0

2π

1

ω2 − ω2
0

has to be analytic in the lower half plane, so that the integration contour can be closed with zero result

if t < 0. Therefore, the contour must be indented in Im(ω)< 0 around ω = ω0 and ω = −ω0 (figure

C.1). The result is then

p(t) = H (t) sin(ω0t).

A more subtle example, dealing with complicated manipulations in two complex planes, is the follow-

ing. Consider the field p(x, t), described via a Fourier integral for both the x- and the t-dependence.

p(x, t) =
∫ ∞

−∞

∫ ∞

−∞
p̃(k, ω) eiωt−ikx dkdω.

If p̃(k, ω), the time- and space-Fourier transformed p(x, t), is given by:

p̃(k, ω) = 1

4π2c2
0

1

k2 − ω2/c2
0

, (C.16)

4If z = z0 is a simple pole of f (z), then the residue of f at z0 is: Res f (z0) = limz→z0(z − z0) f (z).
5We ignore for the moment the problem that for α = 0 the original time signal is only Fourier transformable in the

context of generalized functions.
6The integral of an analytic function does not change with deformation of the integration contour within the region of

analyticity.
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real axis

imaginary
axis

• •
✒ ✑ ✒ ✑

ω0−ω0

ω ∈ C

Figure C.1 Integration contour in complex ω-plane.

then the time-Fourier transformed p̂(x, ω), given by

p̂(x, ω) = 1

4π2c2
0

∫ ∞

−∞

e−ikx

k2 − ω2/c2
0

dk,

must be analytic in Im(ω)6 0. This means that the contour in the complex k-plane (the real axis)

must be indented up-around k = ω/c0 and down-around k = −ω/c0 (figure C.2). This is seen as

real axis

imaginary
axis

• •
✒ ✑

✓ ✏
✭✭

ω/c0

−ω/c0

k ∈ C

❄

✻

Figure C.2 Integration contour in complex k-plane. The arrows indicate the path of the poles ±ω/c0 in the k-plane, when

ω moves in its complex ω-plane from the negative imaginary half onto the real axis, as Im(ω)↑ 0.

follows. For any value of ±ω/c0 not on the k-contour, the integral exists and can be differentiated to

ω any times, so p̂(x, ω) is analytic in ω. However, when a pole k = ω/c0 or k = −ω/c0 crosses

the contour, p̂(x, ω) jumps discontinuously by an amount of the residue at that pole, and therefore

p̂(x, ω) is not analytic for any ±ω/c0 on the contour. So, here, the value of the integral may be either

the limit from above or from below. Since causality requires that p̂(x, ω) is the analytic continuation

from Im(ω)< 0, we have to take the limit Im(ω)↑ 0, i.e. from below for the pole k = ω/c0 and from

above for the pole k = −ω/c0. Since a deformation of the integration contour for an analytic function

does not change the integral, these limits are most conveniently incorporated by a small deformation

of the contour, in a direction opposite to the limit (Fig. C.2). The result is

p̂(x, ω) = e−iω|x |/c0

4π ic0ω
. (C.17)
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As before, the pole ω = 0 belongs to the upper ω-half plane, and we have (c.f. (4.84))

p(x, t) = 1

4π ic0

∫ ∞

−∞

eiω(t−|x |/c0)

ω
dω = 1

2c0

H (t − |x|/c0). (C.18)

If we read x − y for x and t − τ for t , this is just the one-dimensional Green’s function. (See also

below).

C.1.2 Phase and group velocity

The phase velocity of a wave, given by eiωt−ikx (ω and k real), is the velocity for which the phase

ωt − kx = constant. This is

vphase = ω

k
. (C.19)

Since a harmonic wave is an idealization, any wave is really a packet of waves, with frequencies and

wavenumbers related by a dispersion relation ω = ω(k), and localized within a beginning and an end.

This packet does not necessarily travel with the phase speed, but with the group velocity. This should

also be the speed of the energy if an energy is defined.

To determine the group velocity for an almost harmonic wave φ, i.e. with a spatial Fourier represent-

ation concentrated near a single wave number k0, we may approximate

φ(x, t) =
∫ ∞

−∞

f (k)

2ε
eiω(k)t−ikx dk ≃

∫ k0+ε

k0−ε

f (k)

2ε
eiω(k)t−ikx dk (C.20)

≃ f (k0)

2ε
eiω0t−ik0x

∫ k0+ε

k0−ε
ei(k−k0)ω

′
0
t−i(k−k0)x dk = f (k0)

sin ε(x − ω′
0t)

ε(x − ω′
0t)

eiω0t−ik0x

with ω0 = ω(k0), ω
′
0 = d

dk
ω(k0). This shows that φ is a wave packet centred around x −ω′

0t = 0, and

therefore travelling with the velocity ω′
0. In other words,

vgroup =
(

dω

dk

)

k=k0

. (C.21)

C.2 Generalized functions

C.2.1 Introduction

In reality dissipative effects will cause any discontinuity to be smooth and any signal to decay for t →
∞, while any signal can be regarded to be absent for t → −∞. So the classical concept of (smooth)

functions is more than adequate to describe any property of a real sound field. This is, however, not

the case in most of our idealized models. For example, a point source of vanishing size but finite

source strength cannot be described by any ordinary function: it would be something that is zero

everywhere except in one point, where it is infinitely large. Another example is a non-decaying signal,

even as common as sin(ωt), which (classically) cannot be Fourier transformed: for some frequencies

the Fourier integral is not defined and for others just infinitely large. Still, the spectrum of sin(ωt),

consisting of two isolated peaks at ω and −ω, is almost a prototype!
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Does that mean that our idealized models are wrong, or too restricted to be useful? No, not at all. Only

our mathematical apparatus of functions is too restricted. It is therefore convenient, even vital for a

lucid theory, to extend our meaning of function to the so-called generalized functions [121, 98, 256,

102, 62].

Technically speaking, generalized functions or tempered distributions are not functions with a point-

wise definition. Their meaning is always defined in an integrated sense. There are many definitions

and terminology7 of generalized function spaces, mathematically not equivalent, but all containing the

elements most important in applications (delta function, Heaviside function, etc.). See for example

[62].

C.2.2 Formal definition

In the present context we will follow the definition that is intuitively most appealing: the limit8 in

a suitable function space G, such that derivatives and Fourier transforms are always defined. This

definition is analogous to the definition of real numbers by convergent sequences of rational numbers.

We start with the space of the real, smooth, and very fast decaying good functions

G
def==

{
f : R → R | f (k) ∈ C∞(−∞,∞) and (C.22)

f (k) = O(|x|−n) (|x| → ∞) for any n, k > 0
}
.

where f (k)(x) = dk

dxk f (x). A sequence ( fn) ⊂ G defines a generalized function if for every testfunc-

tion g ∈ G the sequence of real numbers

lim
n→∞

∫ ∞

−∞
fn(x)g(x) dx (C.23)

exists as a real number (depending on g, of course).

Care is to be taken: although it is the limit of a sequence of ordinary functions, a generalized function

is not an ordinary function. In particular, it is not a function with a pointwise and explicit meaning.

It is only defined by the way its corresponding sequence ( fn) acts under integration. Furthermore, a

generalized function may be defined by many equivalent regular sequences because it is only the limit

that counts.

On the other hand, generalized functions really extend our definition of ordinary functions. It can be

shown, that any reasonably behaving ordinary function is equivalent to a generalized function, and

may be identified to it. Therefore, we retain the symbolism for integration, and write for a generalized

function f defined by the sequence ( fn) and any g ∈ G

∫ ∞

−∞
f (x)g(x) dx

def== lim
n→∞

∫ ∞

−∞
fn(x)g(x) dx . (C.24)

7For example: generalized functions and tempered distributions when Fourier transformation is guaranteed, weak func-

tions and distributions when derivatives are guaranteed.
8Technically termed: closure of. . .
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C.2.3 The delta function and other examples

A very important generalized function is the delta function δ(x), defined (for example) by

δn(x) =
( n

π

)1/2

e−nx2

, or δn(x) = sin nx

πx
e−x2/n2

. (C.25)

In the limit for n → ∞ all contributions in the integral except from near x = 0 are suppressed, such

that

∫ ∞

−∞
δ(x)g(x) dx = g(0). (C.26)

The second expression of (C.25) illustrates that it is not necessary for a representation of δ(x) to

vanish pointwise outside x = 0. Highly oscillatory behaviour outside the origin may be sufficient for

the integral to vanish.

A useful identity is

δ(ax) = 1

|a|δ(x), (C.27)

which at the same time shows that a delta function is not necessarily dimensionless, as it has the

inverse dimension of its argument (or put in another way: δ(x)dx is dimensionless). A generalization

of this identity yields, for a sufficiently smooth function h with h ′ = dh
dx

6= 0 at any zero of h, the

following result:

∫ ∞

−∞
δ(h(x))g(x) dx =

∑

i

g(xi)

|h ′(xi )|
, h(xi) = 0 (C.28)

where the summation runs over all the zeros of h. This result may be derived from the fact that δ(h(x))

is locally, near a zero xi , equivalent to δ(h ′(xi )(x − xi )), so that δ(h(x)) =
∑
δ(x − xi)/|h ′(xi )|.

The sequence

Hn(x) =
(

1
2

tanh(nx)+ 1
2

)
e−x2/n2

defines the Heaviside stepfunction H (x). If the Heaviside generalized function is used as an ordinary

function it has the pointwise definition

H (x) =





0 (x < 0)
1
2

(x = 0)

1 (x > 0)

(C.29)

Any C∞-function f , with algebraic behaviour for |x| → ∞ (for example, polynomials), defines a

generalized function (also called f ) via the sequence fn(x) = f (x) exp(−x2/n2), since for any good

g

lim
n→∞

∫ ∞

−∞
fn(x)g(x) dx =

∫ ∞

−∞
f (x)g(x) dx .
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Any C∞–function h with algebraic behaviour for |x| → ∞ multiplied by a good function is a good

function, so that the product of such a h with a generalized function f is well-defined. For example,

the equation

x f (x) = 0

has a meaning in generalized sense, with the solution

f (x) = Cδ(x) (C.30)

which is unique, up to the multiplicative constant C .

C.2.4 Derivatives

Every generalized function f defined by ( fn) has a derivative f ′ defined by ( f ′
n), and also satisfying

∫ ∞

−∞
f ′(x)g(x) dx = −

∫ ∞

−∞
f (x)g′(x) dx . (C.31)

Although generalized functions do not have a pointwise meaning, they are not arbitrarily wild. We

have the general form given by the following theorem ([98, p.84]).

Theorem C.2 (General representation)

A necessary and sufficient condition for f (x) to be a generalized function, is that there exist a continu-

ous function h(x) and positive numbers r and k such that f (x) is a generalized r-th order derivative

of h(x)

f (x) = dr

dxr
h(x)

while h(x) has the property that

h(x)

(1 + x2)k/2

is bounded on R.

For example:

sign(x) = 1 + 2H (x) = d

dx
|x|, δ(x) = 1

2

d2

dx2
|x|.

By differentiation of the equation xδ(x) = 0 we obtain for the n-th derivative δ(n)(x) the identity

xnδ(n)(x) = (−1)nn!δ(x).
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C.2.5 Fourier transforms

Every generalized function f defined by ( fn) has a Fourier transform f̂ defined by ( f̂n) which is itself

a generalized function. Indeed, since the Fourier transform ĝ of a good function g is a good function,

we have using the convolution theorem a well-defined

∫ ∞

−∞
f̂ (ω)ĝ(ω) dω = lim

n→∞

∫ ∞

−∞
f̂n(ω)ĝ(ω) dω = 1

2π
lim

n→∞

∫ ∞

−∞
fn(x)g(−x) dx

= 1

2π

∫ ∞

−∞
f (x)g(−x) dx . (C.32)

Examples of Fourier transforms are

1

2π

∫ ∞

−∞
δ(x) e−iωx dx = 1

2π

1

2π

∫ ∞

−∞
e−iωx dx = δ(ω)

1

2π

∫ ∞

−∞
cos(ω0x) e−iωx dx = 1

2
δ(ω − ω0)+ 1

2
δ(ω + ω0),

1

2π

∫ ∞

−∞
H (x) e−iωx dx = P.V.

( 1

π iω

)
+ 1

2
δ(ω) = 1

2π i(ω − i0)

(C.33)

where P.V. denotes “principal value”, which means that under the integration sign the singularity is

to be excluded in the following symmetric way: P.V .
∫ ∞
−∞ = limε↓0

∫ −ε
−∞ +

∫ ∞
ε

. The notation ω − i0

means that the pole ω = 0 is assumed to belong to the complex upper half plane, similar to (C.17).

If −i cotg(ω) is a causal Fourier transform, the poles ω = nπ belong to the complex upper half

plane. In order to make sure that we approach the poles from the right side, we write

−i cotg(ω) = 1 + 2
e−2iω

1 − e−2iω
= 1 + 2 lim

ε↓0

∞∑

n=1

e−2inω−2εn = 1 + 2

∞∑

n=1

e−2inω,

and obtain for the back transform to time domain

∫ ∞

−∞
−i cotg(ω) eiωt dω = 2πδ(t)+ 4π

∞∑

n=1

δ(t − 2n). (C.34)

C.2.6 Products

Products of generalized functions are in general not defined. For example, depending on the defining

sequences of δ(x) and H (x), we may get δ(x)H (x) = Cδ(x) for any finite C . Therefore, integration

along a semi-infinite or finite interval, which is to be interpreted as a multiplication of the integrand

with suitable Heaviside functions, is not always defined.
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Two generalized functions may be multiplied only when either of the two is locally equivalent to an

ordinary function, or as a direct product when they depend on different variables. Some results are

δ(x)H (x + 1) = δ(x),
∫ x0

−x0

δ(x) f (x) dx =
∫ ∞

−∞
δ(x) f (x) dx if x0 > 0,

∫ ∞

−∞

∫ ∞

−∞
δ(x)δ(t) f (x, t) dt dx =

∫ ∞

−∞
δ(x)




∫ ∞

−∞
δ(t) f (x, t) dt


dx,

∫ ∞

−∞
δ(t − τ)δ(τ) dτ = δ(t).

C.2.7 Higher dimensions and Green’s functions

A generalization to several dimensions is possible [210], and many results are fairly straightforward

after an obvious introduction of multi-dimensional good functions. For example, we may define a new

generalized function f (x)g(y) in R
2 by the direct product of f (x) and g(y). For the delta function in

R
3 this leads to

δ(x) = δ(x)δ(y)δ(z)

Care is required near the singular points of a coordinate transformation. For example, provided δ′(r)
is considered to be an odd function in r , the 2-D delta function δ(x − x0) may be written in polar

coordinates ([98, p.306]) as

δ(x − x0) =





δ(r − r0)

r0

∞∑

n=−∞
δ(ϑ − ϑ0 − 2πn) if r0 6= 0,

−δ
′(r)

π
(r > 0) if r0 = 0.

(C.35)

Relevant in the theory of 2-D incompressible potential flow are the following identities. The line

source is a delta function source term in the mass equation:

v = 1

r
(cos θ, sin θ, 0) satisfies ∇·v = 2πδ(x, y). (C.36a)

The line vortex is a delta function type vorticity field:

v = 1

r
(− sin θ, cos θ, 0) satisfies ∇×v = 2πδ(x, y)ez. (C.36b)

A most important application of (more-dimensional) delta functions in the present context is that they

allow a very direct definition of Green’s functions. Classically, the Green’s function G is defined in

a rather complicated way, but in the context of generalized functions it appears to be just the field

resulting from a delta function source. Consider for example the one dimensional wave equation (c.f.

(4.81))

∂2G

∂t2
− c2

0

∂2G

∂x2
= δ(x − y)δ(t − τ).
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After Fourier transformation to t and x we obtain

−ω2G̃ + c2
0k2G̃ = 1

4π2
e−iωτ eiky

which yields equation (C.16) (apart from the amplitude) and then, after the described transformation

back into space and time domain, the Green’s function given by expression (C.18).

See Appendix E for a table of free field Green’s functions in 1-,2-, and 3-D, for the Laplace, Helm-

holtz, wave, and heat equations.

C.2.8 Surface distributions

Of particular interest are the so-called surface distributions δ6(x) defined by the surface integral
∫

R
3
δ6(x)φ(x) dx =

∫

6
φ(x) dσ (C.37)

where φ is an arbitrary test function, and 6 denotes a smooth surface in R
3 with surface element dσ .

In practice, a surface is often defined by an equation S(x) = 0 (section A.3). Near a point x0 on the

surface, S(x) varies to leading order only in the direction of the surface normal eν = ∇S0/|∇S0|,

S(x) = (x − x0)·∇S0 + · · · ≃ |∇S0|ν,

where ν = (x − x0)·eν and S0 indicates evaluation at x0. Since δ6 is locally, after a suitable rotation

and transformation of coordinates, equivalent to a one-dimensional delta function in ν, the coordinate

normal to the surface, we have

δ6(x) = δ(ν) = |∇S0|δ(|∇S0|ν) = |∇S0|δ(S). (C.38)

Note that this result is in fact a generalization of formula (C.28). For sufficiently smooth h we have
∫

R
3
δ(h(x))g(x) dx =

∑

i

∫

Si

g(x)
|∇h(x)| dσ (C.39)

where the summation runs over all the surfaces Si defined by the equation h(x) = 0.

This concept of surface distributions has numerous important applications. For example, integral the-

orems like that of Gauss or Green [102], and Reynolds’ Transport Theorem (section A.1) may be

derived very elegantly and efficiently. We show it for Reynolds’ Theorem and leave Gauss’ theorem

as an exercise.

Consider a finite volume V = V(t) with sufficiently smooth surface S = S(t), moving continuously

in space. Introduce a (smooth) function f (x, t) such that

f (x, t)





> 0 if x ∈ V(t),

= 0 if x ∈ S(t),

< 0 if x 6∈ V(t),

but otherwise arbitrary. Since ∇ f | f =0 is directed normal inwards into V, the outward normal nS of S

is given by (section A.3)

nS(x, t) = − ∇ f

|∇ f |

∣∣∣∣
f =0

.
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Let the surface S(t) be parametrized in time and space, by coordinates (t;λ,µ). Like the auxiliary

function f , this parametrization is not unique, but that will appear to be of no importance. A surface

point xS(t) ∈ S (consider λ and µ fixed), moving with velocity b = .
xS , remains at the surface for all

time, so f (xS(t), t) = 0 for all t , and therefore also its time-derivative, and so

∂ f

∂t
= − .

xS ·∇ f = |∇ f | b·nS.

The variation of a quality F(x, t), integrated over V, is now given by

d

dt

∫

V
F(x, t) dx = d

dt

∫

R
3

H ( f )F(x, t) dx

=
∫

R
3


H ( f )

∂

∂t
F(x, t)+ δ( f )

∂ f

∂t
F(x, t)


dx

=
∫

V

∂

∂t
F(x, t) dx +

∫

S
(b·nS) F(x, t) dσ. (C.40)

where H denotes the Heaviside function, and use is made of equation (C.38). Note that, although in

general b is not unique, its normal component b·nS is unique, in particular it is independent of the

selected function f and parametrization.

C.3 Fourier series

A Fourier series (in complex form) is the following function f (x), defined by the infinite sequence

{cn}∞
n=−∞,

f (x) =
∞∑

n=−∞
cn e2π inx/L . (C.41)

If the series converges, f is periodic with period L . For sufficiently well-behaved functions f the

coefficients are given by

cn = 1

L

∫ L

0

f (x) e−2π inx/L dx . (C.42)

Classically, the Fourier series precedes both the Fourier transform and generalized functions. The

classic theory is, however, rather complicated. On the other hand, Fourier series appear to have a

much simpler structure when they are embedded in the generalized functions, in the following sense.

Fourier series are equivalent to the Fourier transform of periodic generalized functions.

A generalized function f is said to be periodic, with period L , if a coordinate shift

f (x) = f (x + L)

yields the same generalized function.
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We have the following couple of theorems ([121, 256]), telling us when a Fourier series is a general-

ized function, and vice versa.

Theorem C.3 (From Fourier series to generalized function)

A Fourier series (C.41) converges9 to a generalized function if and only if the coefficients cn are of

slow growth. This means, that there is a constant N such that cn = O(|n|N ) for |n| → ∞. The

generalized function it defines is periodic and unique.

Theorem C.4 (From generalized function to Fourier series)

The most general periodic generalized function is just the Fourier series: any periodic generalized

function can be written as a Fourier series with Fourier coefficients cn , while the Fourier transform is

a periodic array of delta functions:

f (x) =
∞∑

n=−∞
cn e2π inx/L, (C.43a)

f̂ (ω) =
∞∑

n=−∞
cnδ

(
ω − 2πn

L

)
, cn = 1

L

∫ ∞

−∞
f (x)U

( x

L

)
e−2π inx/L dx . (C.43b)

Any Fourier series can be differentiated and integrated term by term.

U ∈ C∞ is an auxiliary smoothing function with the following properties:

U (x) = 0 for |x| > 1, U (x)+ U (x − 1) = 1 for 0 6 x 6 1,

but otherwise arbitrary. U is necessary because a generalized function may not be integrable along a

finite interval (for example, when singularities coincide with the end points).

If we are dealing with a generalized function defined by a periodic absolutely-integrable ordinary

function, then U is not necessary, and the expression for cn simplifies to the classical form (C.42).

Although in such a case the Fourier series may converge in ordinary sense, this is not guaranteed, and

the Fourier series is still to be interpreted in a generalized sense.

Examples are the “row of delta’s”

∞∑

n=−∞
δ(x − n) =

∞∑

n=−∞
e2π inx = 1 + 2

∞∑

n=1

cos(2πnx), (C.44a)

with its Fourier transform

1

2π

∞∑

n=−∞
e−iωn =

∞∑

n=−∞
δ(ω − 2πn), (C.44b)

9As the generalized limit of, for example, fm(x) = exp(−x2/m2)
∑m

n=m cn e2π inx/L .
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and its N -th derivative

∞∑

n=−∞
δ(N)(x − n) =

∞∑

n=−∞
(2π in)N e2π inx . (C.44c)

Furthermore, the sawtooth or N-wave with simple discontinuities at x = m (m ∈ Z)

[
1
2

− x
]

1
=

∞∑

n=−∞

′ e2π inx

2π in
=

∞∑

n=1

sin(2πnx)

πn
, (C.44d)

and a sequence of parabola’s, continuous at x = m (m ∈ Z)

1
2

[
x − x2 − 1

6

]
1

=
∞∑

n=−∞

′ e2π inx

(2π in)2
= −

∞∑

n=1

cos(2πnx)

2π2n2
. (C.44e)

∑′
denotes a sum excluding n = 0, [ · ]L denotes the L-periodic continuation of a function f (x)

defined on the interval [0, L]:

[
f (x)

]
L

=
∞∑

n=−∞
B( x

L
− n) f (x − nL),

and B denotes the unit block function

B(x) = H (x)− H (x − 1) ≡
{

1 if 0 ≤ x ≤ 1,

0 otherwise.

Apart from an additional x and 1
2
x2, (C.44d) is the first integral and (C.44e) is the second integral of

the row of delta’s of (C.44a). In general it is true that any generalized Fourier series, with coefficients

cn = O(|n|N )(|n| → ∞), is the (N + 2)-th derivative of a continuous function. This shows that there

is a limit to the seriousness of the singularities that these functions can have [121].

Related examples of some interest are:

− log |2 sin πx| =
∞∑

n=1

cos(2πnx)

n
, (C.45a)

1
2

cotg(πx) =
∞∑

n=1

sin(2πnx), (C.45b)
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− 1
2

tan(πx) =
∞∑

n=1

(−1)n sin(2πnx), (C.45c)

| sin x| = 2

π
− 1

π

∞∑

n=1

cos(2nx)

n2 − 1
4

. (C.45d)

sin x| sin x| = − 1

π

∞∑

n=0

sin(2n + 1)x

(n2 − 1
4
)(n + 3

2
)

(C.45e)

Until now we have considered only generalized Fourier series because of their more transparent prop-

erties. We have to be very cautious, however, when dealing in practice with divergent series. No

attempt must be made to sum such a series numerically term by term! Numerical evaluation is only

possible for classically convergent Fourier series. Some of the most important results are the follow-

ing.

For a given function f we have the following theorem.

Theorem C.5 (Existence of ordinary Fourier series)

If a function f is piecewise smooth10 on the interval [0, L], such that f (x) = 1
2
[ f (x+) + f (x−)],

then the Fourier series of f converges for every x to the L-periodic continuation of f .

For a given Fourier series we have the following theorem.

Theorem C.6 (Continuity of ordinary Fourier series)

If a Fourier series is absolutely convergent, i.e.
∑

|cn| < ∞, then it converges absolutely and uni-

formly to a continuous periodic function f , such that cn are just f ’s Fourier coefficients.

An example of the first theorem is (C.44d). Note that the similar looking (C.45a) just falls outside this

category. Examples of the second are (C.44e) and (C.45d).

C.3.1 The Fast Fourier Transform

The standard numerical implementation of the calculation of a Fourier transform or Fourier coefficient

is the Fast Fourier Transform algorithm [33]. This algorithm calculates for a given complex array

{x j }, j = 0, . . . , N −1 very efficiently (especially if N is a power of 2) the Discrete Fourier Transform

Xk =
N−1∑

j=0

x j exp(−2π i jk/N), k = 0, . . . , N − 1. (C.46)

10 f is piecewise continuous on [0, L] if there are a finite number of open subintervals 0 < x < x1, . . . , xN−1 < x < L

on which f is continuous, while the limits f (0+), f (x1±), . . . , f (L−) exist. f is piecewise smooth if both f and f ′ are

piecewise continuous.
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A Fourier coefficient (C.42) is calculated by discretizing the integral

cn = 1

L

∫ L

0

f (x) e−2π inx/L dx ≃ 1

N

N−1∑

j=0

f ( j L/N) exp(−2π i jn/N)

and identifying x j = f ( j L/N) and cn = Xn/N .

A Fourier transform (C.1) is determined as follows. Restrict the infinite integral to a large enough

finite interval [− 1
2
T, 1

2
T ], and consider only the values ω = 2πk/T , for k = − 1

2
N, . . . , 1

2
N − 1.

Then we have

p̂(ω) = 1

2π

∫ ∞

−∞
p(t) e−iωt dt ≃ 1

2π

∫ 1
2 T

− 1
2

T

p(t) e−iωt dt

= 1

2π

∫ 1
2

T

0

p(t) e−iωt dt + 1

2π

∫ T

1
2

T

p(t − T ) e−iωt dt.

If we finally discretize the integrals

p̂
(2πk

T

)
≃ T

2πN

1
2 N−1∑

j=0

p( j T/N) exp(−2π i jk/N)

+ T

2πN

N−1∑

j= 1
2

N

p( j T/N − T ) exp(−2π i jk/N).

we obtain the required result by identifying

x j =
{

p( j T/N) if 0 ≤ j ≤ 1
2

N − 1,

p( j T/N − T ) if 1
2

N ≤ j ≤ N − 1,

p̂
(2πk

T

)
= T

2πN

{
Xk+N if − 1

2
N ≤ k ≤ −1,

Xk if 0 ≤ k ≤ 1
2

N − 1.
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D Bessel functions

The Bessel equation for integer m

y′′ + 1

x
y′ +

(
1 − m2

x2

)
y = 0 (D.1)

has two independent solutions [247, 1, 57, 71, 127]. Standardized forms are

Jm(x), m-th order ordinary Bessel function of the 1st kind, (D.2a)

Ym(x), m-th order ordinary Bessel function of the 2nd kind. (D.2b)

Jm is regular in x = 0; Ym is singular in x = 0 with branch cut along x < 0; for m > 0 is:

Jm(x) =
∞∑

k=0

(−1)k( 1
2
x)m+2k

k!(m + k)! (D.3)

Ym(x) = − 1

π

m−1∑

k=0

(m − k − 1)!
k! ( 1

2
x)−m+2k + 2

π
log( 1

2
x)Jm(x)

− 1

π

∞∑

k=0

{
ψ(k + 1)+ ψ(m + k + 1)

} (−1)k( 1
2
x)m+2k

k!(m + k)!

with ψ(1) = −γ, ψ(n) = −γ +
n−1∑

k=1

1

k
, γ = 0.577215664901532

Jm(−x) = (−1)m Jm(x), (D.4)

Ym(−x) =




(−1)m

(
Ym(x)− 2i Jm(x)

)
, 0<arg(x)6π,

(−1)m
(

Ym(x)+ 2i Jm(x)
)
, −π<arg(x)60.

(D.5)

J−m(x) = (−1)m Jm(x), (D.6)

Y−m(x) = (−1)mYm(x). (D.7)
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Other common independent sets of solutions are the Hankel functions

H (1)
m (x) = Jm(x)+ iYm(x), (D.8a)

H (2)
m (x) = Jm(x)− iYm(x). (D.8b)

Related are the modified Bessel functions of the 1st and 2nd kind

Im(x) = i−m Jm(ix), (D.9a)

Km(x) =
{

1
2
π im+1 H (1)

m (ix) , −π<arg(x)6 1
2
π,

1
2
π im+1 H (1)

m (ix)− 2π i(−1)m Im(x) , 1
2
π <arg(x)6 π,

(D.9b)

=
{

1
2
π(−i)m+1 H (2)

m (−ix) , − 1
2
π<arg(x)6 π,

1
2
π(−i)m+1 H (2)

m (−ix)+ 2π i(−1)m Im(x), −π <arg(x)6− 1
2
π,

(D.9c)

satisfying

y′′ + 1

x
y′ −

(
1 + m2

x2

)
y = 0 (D.10)

Im is regular in x = 0, Km is singular in x = 0 with branch cut along x < 0.

Im(−x) = (−1)m Im(x) (D.11)

Km(−x) =
{
(−1)m Km(x)+ π i Im(x), 0<arg(x)6 π,

(−1)m Km(x)− π i Im(x), −π<arg(x)60,
(D.12)

I−m(x) = Im(x), (D.13)

K−m(x) = Km(x). (D.14)

Wronskians (with prime ′ denoting derivative):

Jm(x)Y
′
m(x)− Ym(x)J

′
m(x) = 2/πx (D.15)

H (1)
m (x)H (2)

m
′(x)− H (2)

m (x)H (1)
m

′(x) = −4i/πx (D.16)

Im(x)K
′
m(x)− Km(x)I

′
m(x) = −1/x (D.17)

Jm(x)Ym+1(x)− Ym(x)Jm+1(x) = −2/πx (D.18)

Im(x)Km+1(x)+ Km(x)Im+1(x) = 1/x (D.19)
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Jm(x) and J ′
m(x) have an infinite number of real zeros, all of which are simple with the possible

exception of x = 0. The µ-th positive (6= 0) zeros are denoted by jmµ and j ′
mµ respectively, except

that x = 0 is counted as the first zero of J ′
0: j ′

01 = 0. It follows that j ′
0,µ = j1,µ−1.

Asymptotically the zeros behave like

jmµ ≃ (µ+ 1
2
m − 1

4
)π + O(µ−1) (µ → ∞) (D.20a)

j ′
mµ ≃ (µ+ 1

2
m − 3

4
)π + O(µ−1) (µ → ∞) (D.20b)

j ′
m1 ≃ m + 0.8086 m1/3 + O(m−1/3) (m → ∞). (D.20c)

Not only asymptotically but in general it is true that j ′
m1 > m.

Asymptotic behaviour for x → 0:

Jm(x) ≃ ( 1
2
x)m/m! , (D.21)

Y0(x) ≃ 2 log(x)/π, (D.22)

Ym(x) ≃ −(m − 1)! ( 1
2
x)−m/π, (D.23)

H
(1,2)
0 (x) ≃ ±2i log(x)/π, (D.24)

H (1,2)
m (x) ≃ ∓ i(m − 1)!( 1

2
x)−m/π, (D.25)

Im(x) ≃ ( 1
2
x)m/m! , (D.26)

K0(x) ≃ − log(x), (D.27)

Km(x) ≃ 1
2
(m − 1)! ( 1

2
x)−m , (D.28)

Asymptotic behaviour for |x| → ∞ and m fixed:

Jm(x) ≃ ( 1
2
πx)

− 1
2 cos(x − 1

2
mπ − 1

4
π), (D.29)

Ym(x) ≃ ( 1
2
πx)

− 1
2 sin(x − 1

2
mπ − 1

4
π), (D.30)

H (1,2)
m (x) ≃ ( 1

2
πx)

− 1
2 exp[± i(x − 1

2
mπ − 1

4
π)], (D.31)

Im(x) ≃ (2πx)
− 1

2 ex , (| arg(x)| < 1
2
π), (D.32)

Km(x) ≃ (2x/π)
− 1

2 e−x , (| arg(x)| < 3
2
π). (D.33)
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Asymptotic behaviour for |x| → ∞ and m2/x fixed:

Jm(x) ≃ ( 1
2
πx)

− 1
2 cos

(
x − 1

2
πm − 1

4
π + 1

2
(m2 − 1

4
)x−1

)
, (D.34)

Ym(x) ≃ ( 1
2
πx)

− 1
2 sin

(
x − 1

2
πm − 1

4
π + 1

2
(m2 − 1

4
)x−1

)
, (D.35)

H (1,2)
m (x) ≃ ( 1

2
πx)

− 1
2 exp[± i(x − 1

2
mπ − 1

4
π + 1

2
(m2 − 1

4
)x−1)], (D.36)

with absolute accuracy of <1% along x > 2 + 2m + 1
13

m1.5 for any 0 6 m 6 100. The corresponding

approximating zero’s of Jm and J ′
m (and similarly for Ym) are easily found to be

jmµ ≃ 1
2
(µ+ 1

2
m − 1

4
)π + 1

2

√
(µ+ 1

2
m − 1

4
)2π2 − 2m2 + 1

2
, (D.37)

j ′
mµ ≃ 1

2
(µ+ 1

2
m − 3

4
)π + 1

2

√
(µ+ 1

2
m − 3

4
)2π2 − 2m2 + 1

2
. (D.38)

Asymptotic behaviour for m → ∞:

Jm(x) ≃ (2πm)
− 1

2 (ex/2m)m, (D.39)

Jm(m) ≃ 2
1
3 /(3

2
3Ŵ( 2

3
)m

1
3 ), (D.40)

Jm(mx) ≃
{
( 1

2
πmζ+)

− 1
2 cos(mζ+ − m arctan ζ+ − 1

4
π),

(2πmζ−)
− 1

2 exp(mζ− − m artanh ζ−),
(D.41)

Ym(x) ≃ −( 1
2
πm)

− 1
2 (ex/2m)−m , (D.42)

Ym(m) ≃ −2
1
3 /(3

1
6Ŵ( 2

3
)m

1
3 ), (D.43)

Ym(mx) ≃
{
( 1

2
πmζ+)

− 1
2 sin(mζ+ − m arctan ζ+ − 1

4
π),

−( 1
2
πmζ−)

− 1
2 exp(−mζ− + m artanh ζ−),

(D.44)

where ζ+ =
√

x2 − 1, valid for x > 1, and ζ− =
√

1 − x2, valid for 0 < x < 1.

For any continuous f , such that the integral exists, and α > 0, we have

lim
m→∞

∫ ∞

0

m Jm(mαx) f (x) dx = α−1 f
(
α−1

)
. (D.45)
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Important recurrence relations are

Jm−1(x)+ Jm+1(x) = 2m
x

Jm(x), (D.46)

Jm−1(x)− Jm+1(x) = 2J ′
m(x), (D.47)

Ym−1(x)+ Ym+1(x) = 2m
x

Ym(x), (D.48)

Ym−1(x)− Ym+1(x) = 2Y ′
m(x), (D.49)

Im−1(x)+ Im+1(x) = 2I ′
m(x), (D.50)

Im−1(x)− Im+1(x) = 2m
x

Im(x), (D.51)

Km−1(x)+ Km+1(x) = −2K ′
m(x), (D.52)

Km−1(x)− Km+1(x) = −2m
x

Km(x). (D.53)

In particular:

J ′
0(x) = −J1(x), Y ′

0(x) = −Y1(x),

I ′
0(x) = I1(x), K ′

0(x) = −K1(x),
(
xn+1 Jn+1(x)

)′ = xn+1 Jn(x),
(
xn+1 In+1(x)

)′ = xn+1 In(x),(
xn+1Yn+1(x)

)′ = xn+1Yn(x),
(
xn+1 Kn+1(x)

)′ = −xn+1 Kn(x).

(D.54)

Some useful relations involving series are

eix cosϑ =
∞∑

m=−∞
im Jm(x) eimϑ, (D.55)

J0(k R) =
∞∑

m=−∞
eim(ϑ−ϕ) Jm(kr)Jm(k̺), (D.56)

where: R2 = r2 + ̺2 − 2r̺ cos(ϑ − ϕ),

1

r0

δ(r − r0) =





∞∑

µ=1

Jm( j ′
mµr0)Jm( j ′

mµr)

1
2
(1 − m2/j ′2

mµ)Jm( j ′
mµ)

2
(0 < r, r0 < 1),

∞∑

µ=1

Jm( jmµr0)Jm( jmµr)
1
2

J ′
m( jmµ)2

(0 < r, r0 < 1).

(D.57)
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Relations involving integrals:∫
x Cm(αx)C̃m(βx) dx = x

α2 − β2

{
βCm(αx)C̃

′
m(βx) − αC ′

m(αx)C̃m(βx)
}
, (D.58)

∫
x Cm(αx)C̃m(αx) dx = 1

2
(x2 − m2

α2 )Cm(αx)C̃m(αx)+ 1
2
x2 C ′

m(αx)C̃
′
m(αx) , (D.59)

where Cm, C̃m is any linear combination of Jm,Ym, H (1)
m and H (2)

m ,

∫
xDm(αx)D̃m(βx) dx = −x

α2 − β2

{
βDm(αx)D̃

′
m(βx) − αD ′

m(αx)D̃m(βx)
}
, (D.60)

∫
xDm(αx)D̃m(αx) dx = 1

2
(x2 + m2

α2 )Dm(αx)D̃m(αx)− 1
2
x2D ′

m(αx)D̃
′
m(αx), (D.61)

where Dm, D̃m is any linear combination of Im and Km,

∫ π

0

eix cosϑ cos(mϑ) dϑ = 1
2

∫ π

−π
eix cosϑ+imϑ dϑ = π im Jm(x), (D.62)

1
2π

∫ π

−π
e−imϑ+ix sinϑ dϑ = Jm(x), (D.63)

∫ ∞

0

α

γ
e−iγ |z| J0(̺α) dα = e−ikr

−ir
,

{
γ=

√
k2 − α2, Im(γ )60,

r=
√
̺2 + z2, k>0,

(D.64)

∫ ∞

−∞
e±ix cosh y dy = ±π i H

(1,2)
0 (x), (D.65)

∫ ∞

−∞

1

γ
e−iαx−iγ |y| dα = πH

(2)
0 (kr),

{
γ=

√
k2 − α2, Im(γ )60,

r=
√

x2 + y2, k>0,
(D.66)

∫∫ ∞

−∞

1

γ
e−iαx−iβy−iγ |z| dαdβ = 2π

e−ikr

−ir
,





γ=
√

k2 − α2 − β2,

Im(γ )60, k>0,

r=
√

x2 + y2 + z2,
(D.67)

∫ ∞−i0

−∞−i0

H
(2)
0 (ωr) eiωt dω = 4i

H (t − r)√
t2 − r2

, (D.68)

∫ ∞

0

x J0(xr)

x2 − k2
dx =

{
1
2
π i H

(1)
0 (kr) (Im(k) > 0),

− 1
2
π i H

(2)
0 (kr) (Im(k) < 0),

(D.69)

∫ ∞

0

xn Jn(x) e−ax dx = 1 · 3 · 5 · · · (2n − 1)

(1 + a2)n+ 1
2

,

∫ ∞

0

xn Jn−1(x) e−ax dx = 1 · 3 · 5 · · · (2n − 1)

(1 + a2)n+ 1
2

a,

(a > 0) (D.70)
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∫ ∞

0

x Jm(αx)Jm(βx) dx = δ(α − β)√
αβ

(α, β > 0), (D.71)

∫ ∞

0

xYm(αx)Jm(βx) dx = 2

π

1

α2 − β2

(
β

α

)m

(Princ. Val.), (D.72)

∫ ∞

0

J0(αx) sin(βx) dx = H (β − α)√
β2 − α2

, (α, β > 0) (D.73)

∫ ∞

0

J0(αx) cos(βx) dx = H (α − β)√
α2 − β2

, (α, β > 0) (D.74)

∫ ∞

0

Jn(αx) sin(βx) dx =





sin(n arcsin(
β

α
))√

α2 − β2
(0<β<α),

αn cos( 1
2
nπ)√

β2 − α2
(
β +

√
β2 − α2

)n (0<α<β),

(D.75)

∫ ∞

0

Jn(αx) cos(βx) dx =





cos(n arcsin(β
α
))

√
α2 − β2

(0<β<α),

−αn sin( 1
2
nπ)√

β2 − α2
(
β +

√
β2 − α2

)n (0<α<β),

(D.76)

∫ ∞

0

Y0(αx) sin(βx) dx =





2

π

1√
α2 − β2

arcsin(β
α
) (0<β<α),

2

π

−1√
β2 − α2

arcosh(
β

α
) (0<α<β),

(D.77)

∫ ∞

0

Y0(αx) cos(βx) dx = − H (β − α)√
β2 − α2

, (α, β > 0) (D.78)

∫ ∞

0

K0(αx) sin(βx) dx = 1√
α2 + β2

arsinh(
β

α
), (α, β > 0) (D.79)

∫ ∞

0

K0(αx) cos(βx) dx =
1
2
π√

α2 + β2
(α, β > 0) (D.80)

Related to Bessel functions of order 1
3

are the Airy functions Ai and Bi [1], given by

Ai(x) = 1

π

∫ ∞

0

cos( 1
3
t3 + xt) dt (D.81)

Bi(x) = 1

π

∫ ∞

0

[
exp(− 1

3
t3 + xt)+ sin( 1

3
t3 + xt)

]
dt (D.82)
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254 D Bessel functions

They are solutions of

y′′ − xy = 0, (D.83)

with the following asymptotic behaviour (introduce ζ = 2
3
|x|3/2)

Ai(x) ≃





cos(ζ − 1
4
π)

√
π |x|1/4 (x → −∞),

e−ζ

2
√
π x1/4

(x → ∞),

(D.84)

Bi(x) ≃





cos(ζ + 1
4
π)

√
π |x|1/4 (x → −∞),

eζ√
π x1/4

(x → ∞).

(D.85)

0

0.5

1

2 4 6 8 10 12 14

Figure D.1 Bessel function Jn(x) as function of order and argument.
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E Free field Green’s functions

Some relevant Green’s functions for the Laplace equation, the reduced wave equation (Helmholtz

equation), the wave equation, and the diffusion equation (heat equation) are summarized in the table

below for 1-, 2-, and 3-dimensional infinite space. The boundary conditions applied are (depending

on the equation): symmetry, the function or its derivative vanishing at infinity, outward radiating (as-

suming a eiωt convention) and causality (vanishing before t = 0).

Equation 1-D 2-D 3-D

∇2G = δ(x)
1

2
|x| 1

2π
log R − 1

4πr

∇2G + k2G = δ(x)
i

2k
e−ik|x | i

4
H
(2)
0 (k R) −e−ikr

4πr

∂2G

∂t2
− c2∇2G = δ(x)δ(t)

1

2c
H (t − |x|/c) 1

2πc2

H (t − R/c)√
t2 − R2/c2

δ(t − r/c)

4πc2r

∂G

∂t
− α∇2G = δ(x)δ(t)

H (t) e−x2/4αt

(4παt)1/2

H (t) e−R2/4αt

4παt

H (t) e−r2/4αt

(4παt)3/2

Notation: R =
√

x2 + y2, r =
√

x2 + y2 + z2.



F Summary of equations for fluid motion

For general reference we will describe here a large number of possible acoustic models, systematically

derived from the compressible Navier-Stokes equations, under the assumptions of absence of friction

and thermal conduction, and the fluid being a perfect gas. The flow is described by a steady mean flow

and unsteady perturbations, upon which linearization and Fourier time-analysis is possible. Further

simplifications are considered based on axi-symmetric geometry and mean flow.

F.1 Conservation laws and constitutive equations

The original laws of mass, momentum and energy conservation, written in terms of pressure p, density

ρ, velocity vector v, scalar velocity v = |v|, viscous stress tensor τ , internal energy e, and heat flux

vector q, are given by

mass: ∂
∂t
ρ + ∇·(ρv) = 0 (F.1)

momentum: ∂
∂t
(ρv) + ∇·(ρvv) = −∇ p + ∇ ·τ (F.2)

energy: ∂
∂t
(ρE)+ ∇·(ρEv) = −∇·q − ∇·(pv)+ ∇·(τv) (F.3)

while

E = e + 1
2
v2. (F.4)

It is often convenient to introduce enthalpy or heat function

i = e + p

ρ
, (F.5)

or entropy s and temperature T via the fundamental law of thermodynamics for a reversible process

T ds = de + pdρ−1 = di − ρ−1dp. (F.6)
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With d
dt

= ∂
∂t

+ v ·∇ for the convective derivative, the above conservation laws may be reduced to

mass: d
dt
ρ = −ρ∇·v (F.7a)

momentum: ρ d
dt
v = −∇ p + ∇ ·τ (F.7b)

energy : ρ d
dt

e = −∇·q − p∇·v + τ :∇v (F.7c)

ρ d
dt

i = d
dt

p − ∇·q + τ :∇v (F.7d)

ρT d
dt

s = −∇·q + τ :∇v. (F.7e)

Of the energy equations, the entropy form (F.7e) is the most convenient one for acoustic applications.

For an ideal gas we have the following relations

p = ρRT, de = CV dT, di = CPdT (F.8a,b,c)

where CV is the heat capacity or specific heat at constant volume, CP is the heat capacity or specific

heat at constant pressure [113]. CV = CV (T ) and CP = CP(T ) are in general functions of temper-

ature. R is the specific gas constant and γ the specific-heat ratio, which are practically constant and

given by (the figures refer to air)

R = CP − CV = 286.73 J/kg K, γ = CP

CV

= 1.402 (F.9a,b)

From equation (F.6) it then follows for an ideal gas that

ds = CV

dp

p
− CP

dρ

ρ
(F.10)

while isentropic perturbations (ds = 0), like sound, propagate with the sound speed c given by

c2 =
(∂p

∂ρ

)
s
= γ p

ρ
= γ RT . (F.11)

For a perfect gas, the specific heats are constant (independent of T ), and we can integrate

e = CV T + einit, i = CP T + iinit, s = CV log p − CP log ρ + sinit. (F.12a,b,c)

The integration “constants” einit, iinit and sinit refer to the initial situation of each particle. So this result

is only useful if we start with a fluid of uniform thermodynamical properties, or if we are able to trace

back the pathlines (or streamlines for a steady flow).
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F.2 Acoustic approximation

F.2.1 Inviscid and isentropic

In the acoustic realm we will consider, the viscous or turbulent stress terms will be assumed to play a

role only in an aerodynamic source region, while any perturbation is too fast to be affected by thermal

conduction. Therefore, for the applications of acoustic propagation we will ignore viscous shear stress

(τ ) and thermal conduction (q). In particular, this is obtained as follows. We make dimensionless by

scaling

x := L x, v := v0v, t := L

v0

t, ρ := ρ0ρ,

dp := ρ0v
2
0dp, τ := µv0

L
τ , q := κ1T

L
q,

T := T0T, dT := 1T dT, ds := CP1T

T0

ds

to get

d
dt
ρ = −ρ∇·v (F.13a)

ρ d
dt
v = −∇ p + 1

Re
∇ ·τ (F.13b)

ρT d
dt

s = − 1

Pe
∇·q + Ec

Re
τ :∇v, (F.13c)

where Re = ρ0v0L/µ denotes the Reynolds number, Pe = ρ0CPv0L/κ the Peclet number, and

Ec = v2
0/CP1T the Eckert number. If the Reynolds number tends to infinity, usually also the Peclet

number does, because Pe = Pr Re and the Prandtl number Pr is for most fluids and gases of order 1.

Then, provided the Eckert number is not large, we obtain

d
dt
ρ = −ρ∇·v (F.14a)

ρ d
dt
v = −∇ p (F.14b)

d
dt

s = 0 (F.14c)

which means that entropy remains constant, and thus dh = ρ−1dp, along streamlines.

Furthermore, we will assume the gas to be perfect, with the following thermodynamical closure rela-

tions

ds = CV

dp

p
− CP

dρ

ρ
, c2 = γ p

ρ
. (F.14d)
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By substituting equation (F.14d) into equation (F.14c) we obtain

d
dt

p = c2 d
dt
ρ. (F.14e)

If the flow is initially homentropic (sinit is uniformly constant) then

p ∝ ργ es/CV (F.14f)

If the flow is homentropic (s is uniformly constant) then

p ∝ ργ (F.14g)

F.2.2 Perturbations of a mean flow

When we have a steady mean flow with unsteady perturbations, given by

v = v0 + v′, p = p0 + p′, ρ = ρ0 + ρ ′, s = s0 + s′ (F.15)

and linearize for small amplitude, we obtain for the mean flow

∇·(ρ0v0) = 0 (F.16a)

ρ0(v0 ·∇)v0 = −∇ p0 (F.16b)

(v0 ·∇)s0 = 0 (F.16c)

while

ds0 = CV

dp0

p0

− CP

dρ0

ρ0

, c2
0 = γ p0

ρ0

(F.16d)

and the perturbations

∂
∂t
ρ ′ + ∇·(v0ρ

′ + v′ρ0) = 0 (F.17a)

ρ0

(
∂
∂t

+ v0 ·∇)
v′ + ρ0

(
v′ ·∇)

v0 + ρ ′(v0 ·∇)v0 = −∇ p′ (F.17b)

( ∂
∂t

+ v0 ·∇)s′ + v′ ·∇s0 = 0 (F.17c)

while, assuming s′
init = 0,

s′ = CV

p0

p′ − CP

ρ0

ρ ′ = CV

p0

(
p′ − c2

0ρ
′), c′ = 1

2
c0

( p′

p0

− ρ ′

ρ0

)
. (F.17d)

The expression for c′ usually serves no purpose.
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260 F Summary of equations for fluid motion

From equation (F.14e) we get for the mean flow v0 ·∇ p0 = c2
0v0 ·∇ρ0, and for the perturbations an

equation, equivalent to (F.17c) and (F.17d),

∂
∂t

p′ + v0 ·∇ p′ + v′ ·∇ p0 = c2
0

(
∂
∂t
ρ ′ + v0 ·∇ρ ′ + v′ ·∇ρ0

)
+ c2

0

(
v0 ·∇ρ0

)(
p′

p0
− ρ′

ρ0

)
. (F.18)

If the mean flow is homentropic (s0 = constant), we have ∇ p0 = c2
0∇ρ0 while the perturbations are

isentropic along streamlines.

If the perturbations are entirely isentropic (s′ ≡ 0), for example when v0 = 0 and s0 = constant or

when the flow is homentropic (satisfying equation F.14g), the pressure and density perturbations are

related by the usual

p′ = c2
0ρ

′. (F.19)

F.2.3 Myers’ Energy Corollary

Myers’ definition of energy [155, 156, 157] for unsteady disturbances propagating in moving fluid

media is both consistent with the general conservation law of fluid energy and with the order of ap-

proximation in the linear model adopted to describe the disturbances. When the mass and momentum

equations (F.1,F.2) and the general energy conservation law (F.3) for fluid motion is expanded to

quadratic order, this 2nd order energy term may be reduced to the following conservation law for

perturbation energy density E , energy flux I , and dissipation D

∂
∂t

E + ∇· I = −D (F.20)

where (for simplicity we neglect viscous stress and heat conduction)

E = p′2

2ρ0c2
0

+ 1
2
ρ0v

′2 + ρ ′v0 ·v′ + ρ0T0s′2

2Cp

, (F.21a)

I =
(
ρ0v

′ + ρ ′v0

)( p′

ρ0

+ v0 ·v′
)

+ ρ0v0T ′s′, (F.21b)

D = −ρ0v0 ·(ω′×v′) − ρ ′v′ ·(ω0×v0

)
+ s′(ρ0v

′ + ρ ′v0

)·∇T0 − s′ρ0v0 ·∇T ′. (F.21c)

while the vorticity vector is denoted by ∇×v = ω = ω0+ω′. Without mean flow this definition reduces

to the traditional one. Note that, according to this definition, acoustic energy is entirely conserved in

homentropic, irrotational flow. In vortical flow, the interaction with the mean flow may constitute a

source or a sink of acoustic energy.

RienstraHirschberg 2 Aug 2018, 12:00



F.2 Acoustic approximation 261

F.2.4 Zero mean flow

Without mean flow, such that v0 = ∇ p0 = 0, the equations may be reduced to

∂2

∂t2 p′ − ∇·(c2
0∇ p′) = 0. (F.22)

F.2.5 Time harmonic

When the perturbations are time-harmonic, given by

v′ = Re(v̂ eiωt), p′ = Re( p̂ eiωt), ρ ′ = Re(ρ̂ eiωt), s′ = Re(ŝ eiωt), (F.23)

we have in the usual complex notation

iωρ̂ + ∇·(v0ρ̂ + v̂ρ0

)
= 0 (F.24a)

ρ0

(
iω + v0 ·∇)

v̂ + ρ0

(
v̂ ·∇)

v0 + ρ̂
(
v0 ·∇)

v0 = −∇ p̂ (F.24b)
(
iω + v0 ·∇)

ŝ + v̂ ·∇s0 = 0 (F.24c)

ŝ = Cv

p0

(
p̂ − c2

0ρ̂
)
. (F.24d)

F.2.6 Irrotational isentropic flow

When the flow is irrotational and isentropic everywhere (homentropic), we can introduce a potential

for the velocity, where v = ∇φ, and express p as a function of ρ only, such that we can integrate the

momentum equation, and obtain the important simplification

∂

∂t
φ + 1

2
v2 + c2

γ − 1
= constant,

p

ργ
= constant. (F.25)

For mean flow with harmonic perturbation, where φ = φ0 + Re(φ̂ eiωt), we have then for the mean

flow

1
2
v2

0 + c2
0

γ − 1
= constant,

∇·(ρ0v0) = 0,
p0

ρ
γ

0

= constant

(F.26a)

and for the acoustic perturbations

(
iω + v0 ·∇)

ρ̂ + ρ̂∇·v0 + ∇·(ρ0∇φ̂
)

= 0,

ρ0

(
iω + v0 ·∇)

φ̂ + p̂ = 0, p̂ = c2
0ρ̂.

(F.26b)
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These last equations are further simplified (eliminate p̂ and ρ̂ and use the fact that ∇·(ρ0v0) = 0) to

the rather general convected wave equation

ρ−1
0 ∇·(ρ0∇φ̂

)
−

(
iω + v0 ·∇)[

c−2
0

(
iω + v0 ·∇)

φ̂
]

= 0. (F.27)

F.2.7 Uniform mean flow

The simplest, but therefore probably most important configuration with mean flow, is the one with a

uniform mean flow.

Axial mean velocity u0, mean pressure p0, density ρ0 and sound speed c0 are constants, so we have

(
iω + u0

∂
∂x

)
ρ̂ + ρ0∇· v̂ = 0, (F.28a)

ρ0

(
iω + u0

∂
∂x

)
v̂ + ∇ p̂ = 0, (F.28b)

(
iω + u0

∂
∂x

)(
p̂ − c2

0ρ̂
)

= 0. (F.28c)

Equation (F.28c) shows that entropy perturbations are just convected by the mean flow. Without

sources of entropy, the field is isentropic if we start with zero entropy.

We may split the perturbation velocity into a vortical part and an irrotational part (see equation 1.22)

by introducing the vector potential (stream function) ψ̂ and scalar potential φ̂ as follows

v̂ = ∇×ψ̂ + ∇φ̂, (F.29)

If desired, the arbitrariness in ψ̂ (we may add any ∇ f , since ∇×∇ f ≡ 0) may be removed by adding

the gauge condition ∇·ψ̂ = 0, such that the vorticity is given by

ω̂ = ∇×v̂ = ∇(∇·ψ̂)− ∇2ψ̂ = −∇2ψ̂ . (F.30)

By taking the curl of equation (F.28b) we can eliminate p and φ to produce an equation for the

vorticity:

−
(
iω + u0

∂
∂x

)
∇2ψ̂ =

(
iω + u0

∂
∂x

)
ω̂ = 0. (F.31)

This shows that vorticity perturbations are just convected by the mean flow. Without sources of vorti-

city, the field is irrotational if we start without vorticity.

Indeed, vorticity and pressure/density perturbations are decoupled. Since the divergence of a curl is

zero, ∇· v̂ = ∇·(∇×ψ̂ + ∇φ̂) = ∇2φ̂, equation (F.28a) becomes

(
iω + u0

∂
∂x

)
ρ̂ + ρ0∇2φ̂ = 0 (F.32)
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By taking the divergence of equation (F.28b), and using equations (F.28a,F.28c), not assuming isen-

tropy or irrotationality, we can eliminate φ and ρ to obtain the convected reduced wave equation for

the pressure

c2
0∇2 p̂ −

(
iω + u0

∂
∂x

)2
p̂ = 0. (F.33)

Plane wave solutions are given by

p̂ = A e−ik·x, v̂ = k
ρ0�

A e−ik·x, � = ω − u0kx, c2
0|k|2 = �2, (F.34)

not propagating in k-direction but in the direction of the intensity vector

〈I〉 = ω|A|2
2ρ0�

2

(
k + M0|k|ex

)
, M0 = u0/c0. (F.35)

With some care, especially taking due notice of any singular edge behaviour, equation (F.33) may be

transformed to the ordinary reduced wave equation

c2
0∇2 p̃ +�2 p̃ = 0 (F.36)

by introducing

p̂(x, r, θ;ω) = p̃(X, r, θ;�) exp(i �M
c0

X), (F.37)

where x = βX, ω = β�, M = u0

c0

, β =
√

1 − M2.

F.2.8 Parallel mean flow

Assume a mean flow field parallel in x-direction with uniform mean pressure, i.e. v0 = (u0, 0, 0),

u0 = u0(y, z), ρ0 = ρ0(y, z), c0 = c0(y, z) and p0 = constant. Then by taking the convective time

derivative of the divergence of the momentum equation, eliminating the velocity, and using the fact

that p0 is constant, we obtain from (F.17) the equation

(
∂
∂t

+ u0
∂
∂x

)3
p + 2c2

0
∂
∂x
(∇⊥u0 ·∇⊥ p)−

(
∂
∂t

+ u0
∂
∂x

)
∇· (

c2
0∇ p

)
= 0, (F.38)

where ∇⊥ denotes (∂y, ∂z). If we look for solutions of the form p(x, y, z, t) = P(y, z) eiωt−ikx and

denote � = ω − ku0, we obtain a pre-form of the Pridmore-Brown equation [182]

−i�3 P − 2ikc2
0 (∇⊥u0 ·∇⊥ P)− i�

(
−k2c2

0 P + ∇⊥ · (
c2

0∇⊥ P
))

= 0.

By noting that −k∇⊥u0 = ∇⊥�, this equation can be further simplified into

∇⊥ ·
( c2

0

�2
∇⊥ P

)
+

(
1 − k2c2

0

�2

)
P = 0. (F.39)
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G Answers to exercises.

Chapter 1

d) Only if thermodynamic equilibrium prevails.

e) The pressure on the piston p1 can be related to the atmospheric pressure p2 in the free jet by using the unsteady

Bernoulli equation (1.32b) applied to an incompressible fluid (ρ = ρ0):

∂1φ

∂t
+ 1

2
(v2

2 − v2
1)+ p2 − p1

ρ0
= 0.

By neglecting the non-uniformity of the flow we have

1φ =
∫ 2

1
v·dℓ ≃ v1ℓ1 + v2ℓ2.

Using the mass conservation law (1.19) for an incompressible fluid we find by continuity of the volume flux

A1v1 = A2v2.

Hence, the equation of Bernoulli becomes, with v1 = at ,

p1 − p2

ρ0
= a

(
ℓ1 + A1

A2
ℓ2

)
+ 1

2

(( A1

A2

)2
− 1

)
(at)2.

At t = 0 we have a ratio of the pressure drop, determined by the ratio of the potential difference, of

v1ℓ1

v2ℓ2
= A1ℓ1

A2ℓ2
.

Chapter 2

a) A depth of 100 m corresponds to a pressure of 10 bar, hence an air density ρg which is ten times higher than at 1 bar.

Following (2.45) we have a speed of sound of 75 m/s. Note that ρgc2
g = γ p so that c depends only on γ and not on

other gas properties.

c) Mathematically, any sound speed can be used, but the simple physical meaning only appears when we choose the value

that prevails at the listener’s position.

d) Not necessarily. In an isentropic flow is Ds
Dt = 0, but ∇·(vρ0)) vanishes only for an homentropic flow.

e) No, p′ is more appropriate.

f) Certainly not.

g) Yes.

h) No. The fluid should be stagnant and uniform (quiescent).

i) No. ρc2 = γ p so that ρc depends also on the temperature because c =
√
γ RT .

j) From the wave equation it follows that k = ωn/c0 for some real unit vector n. So the surface is given by c0t − n·x =
constant, with real coefficients, and so defines a plane.
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Chapter 3

a) Every point of the line source has a different distance, and therefore different travel time, to the observer. Note the tail

of the 2-D wave-equation Green’s function (Appendix E) (2πc2)−1 H(t − R/c)/
√

t2 − R2/c2.

b) The field P of one point source is given by (see Appendix E)

Pt t − c2∇2 P = δ(t − τ)δ(x − x0)δ(y − y0)δ(z) with solution

P = δ(t − τ − r0/c)/4πc2r0 where r0 = {(x − x0)
2 + (y − y0)

2 + z2}1/2.

Integrate over all x0, y0, introduce x0 = x + {r2
0

− z2}1/2 cos θ0 and

y0 = y + {r2
0

− z2}1/2 sin θ0, and obtain the total field

p =
∫∫

P dx0dy0 = 2π
4πc2

∫ ∞
|z| δ(t − τ − r0/c) dr0 = (2c)−1 H(t − τ − |z|/c).

This could have been anticipated from the fact that the problem is really one dimensional.

c) From Appendix E we find the total field

p(x, y, z) = 1
4

i

∞∑

n=−∞
H
(2)
0
(k Rn) ≃ 1

4
i

∞∑

n=−∞
( 1

2
πk Rn)

− 1
2 exp( 1

4
π i − ik Rn)

where Rn = ((x − nd)2 + y2)
1
2 = (r2 − 2rnd cos θ + n2d2)

1
2 .

Consider the sources satisfying −r ≪ nd ≪ r , such that

Rn ≃ r − nd cos θ (r → ∞).

This part of the series looks like

· · · ≃ 1
4

i
∑

( 1
2
πkr)−

1
2 exp( 1

4
π i − ikr + iknd cos θ)

and grows linearly with the number of terms if

exp(iknd cos θ) = 1, or kd cos θ = 2πm.

d) The condition is now exp(−iπn + iknd cos θ) = 1, or kd cos θ = (2m + 1).

e) If we make x dimensionless by a length scale L , we have δ(x) = δ( x
L

L) = 1
L
δ( x

L
). So the dimension of δ(x) is

(length)−1.

f) Multiply by a test function φ(x, y) and integrate

· · · = −
∫∫

1

r
φr dx dy = −

∫ 2π

0

∫ ∞

0
φr dr dθ = 2πφ(0, 0).

g) Let S be given by an equation f (x) = 0, such that f (x) > 0 if and only if x ∈ V . The outward normal n is then given

by n = −(∇ f/|∇ f |) f =0. Since H( f )v vanishes outside V , we have

0 =
∫

∇·[H( f )v
]

dx =
∫ [

H( f )∇·v + δ( f ) v·∇ f
]
dx

=
∫

V
∇·v dx −

∫

S
v·n dσ.

h) Only the terms contribute which satisfy 0 < 2nL ≤ c0t , so we obtain

(2 + R)g(t) = R f (t)+ 2

⌊c0t/2L⌋∑

n=1

(
f
(
t − 2nL

c0

)
− g

(
t − 2nL

c0

))
.

i) p̂(x) = e−ikx +R eikx . If p̂(x0) = 0, we have R = − e−2ikx0 .

Since p̂(x0) = 0 and v̂(x0) 6= 0 we have simply Z = 0.

j) v̂(x) = (ρ0c0)
−1(e−ikx −R eikx ). If v̂(x0) = 0, we have R = e−2ikx0 .

Since v̂(x0) = 0 and p̂(x0) 6= 0 we have simply Z = ∞.
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k) With p̂(x) = e−ikx +R eikx and v̂(x) = (ρ0c0)
−1(e−ikx −R eikx ) we have R = (Z0 − ρ0c0)/(Z0 + ρ0c0), so

ZL = ρ0c0
eikL +R e−ikL

eikL −R e−ikL
= ρ0c0

Z0 + iρ0c0 tan(kL)

ρ0c0 + i Z0 tan(kL)
.

l) If R > 0, m > 0, K > 0, the zeros of Z(ω) = R + iωm − i K/ω belong to the upper half plane. If R = 0 the zeros are

real, and have to be counted to the upper half plane. The same for the real pole ω = 0.

z(t) = 2π(Rδ(t)+ mδ′(t)+ K H(t)), y(t) = 2πH(t)(α e−αt −β e−βt )√
R2 − 4mK

,

where α, β = (R ±
√

R2 − 4mK )/2m.

m) From Ingard’s boundary condition (3.43) we have iωZ(v·ey) = i�p which yields with � = ω/(1 + M0 cosϑ) and

M0 = u0/c0 that (1 + M0 cos ϑ)Z sinϑ/ρ0c0 = (1 + R)/(1 − R), or

R = (1 + M0 cosϑ)Z sinϑ − ρ0c0

(1 + M0 cosϑ)Z sinϑ + ρ0c0
,

while R = 0 if Z = ρ0c0

sinϑ(1 + M0 cosϑ)
.

Chapter 4

a) For a wave p′ = G(x + c0t) corresponding to a C− characteristic propagating in a uniform region with (ρ0, c0)

and u0 = 0 the C+ characteristics carry the message: p′ + ρ0c0u′ = 0 in the entire wave region. This implies that

p′ = −ρ0c0u′ along any C− characteristic. Alternatively, we have from the momentum conservation law: ρ0
∂
∂t

u′ =
− ∂
∂x

p′ = − 1
c0

∂
∂t

p′ because p′ is a function of (x + c0t) along a C− characteristic. Integration with respect to time

yields: ρ0u′ = −p′/c0.

b) The piston induces the pressures p′
I = ρ0,Ic0,Iu

′ and p′
II = −ρ0,IIc0,IIu

′. The force amplitude is: F̂ = S(ρIcI +
ρIIcII)ωa = 9.15 N. As p′

I − p′
II = 915 Pa ≪ ρ0c2

0
≃ 105 Pa we can use a linear theory.

c) The flow perturbation u′ is such that the total flow velocity u0 + u′ = 0 at the closed valve. Hence we have p1 =
−ρwcwu′ = ρwcwu0 and p1 = −p2. For u0 = 0.01 m/s we find p1 = −p2 = 1.5 × 104 Pa. For u0 = 1 m/s we find

p1 = 1.5 × 106 Pa. The pressure p2 can reach −15 bar if there is no cavitation. Otherwise it is limited to the vapour

pressure of the water.

d) v j = 2cw(A/S)(1 −
√

1 − (u0/cw)) ≃ u0 A/S. 1p ≃ 1
2
ρw(u0 A/S)2.

e) Energy conservation implies: A1 p′
1
u′

1
= A2 p′

2
u′

2
, while mass conservation implies: A1u′

1
= A2u′

2
. Substitution of

the mass conservation law in the energy conservation law yields: p′
1

= p′
2
.

f) R1,2 = T1,2 − 1 = (ρ2c2 − ρ1c1)/(ρ2c2 + ρ1c1).

Rair,water = 0.99945, Tair,water = 1.99945.

Rwater,air = −0.9989, Twater,air = 0.0011.

g) T1 − T2 = 30 K, ρ1c1/ρ2c2 =
√

T2/T1 = 1.05.

R1,2 = −0.03, T1,2 = 0.97.

h) (I−
1
/I+

1
) = R2

1,2
= (ρ1c1 − ρ2c2)

2/(ρ1c1 + ρ2c2)
2,

(p+
1

+ p−
1
)(p+

1
− p−

1
)/ρ1c1 = I+

1
− I−

1
= I+

2
, (I+

2
/I+

1
) = 1 − (I−

1
/I+

1
).

i) R1,2 = 0.0256, p+
1

= (ρ1c1û p)/(1 − R1,2 e−2ikL ), p−
1

= R1,2 p+
1

e−2ikL ,

p+
2

= p+
1

e−ikL +p−
1

eikL .

j) T1,2 = 2A1/(A1 + A2), R1,2 = 1 − T1,2 = (A1 − A2)/(A1 + A2).

k) T1,2 = 2ρ2c2 A1/(ρ1c1 A2 + ρ2c2 A2), R1,2 = 1 − T1,2.
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l) lim
A2/A1→0

R1,2 = 1, lim
A2/A1→∞

R1,2 = −1.

m) For an orifice with wall thickness L and cross-sectional area Ad in a pipe of cross-sectional area A p we have: R =
p−

1
/p+

1
=

ik(L + 2δ)A p/[2Ad + ik(L + 2δ)A p], where k = ω/c0, δ ≃ 8
3π

√
Ad/π .

p) Without mean flow (u0 = 0):

• At low amplitudes, when linear theory is valid, friction is negligible when δ2
v = 2ν/ω ≪ Ad .

• At large amplitudes, u2/ω2 Ad > 1, flow separation will occur. Flow separation is induced by viscosity. If δ2
v ≪ Ad

then the exact value of the viscosity is not important to predict flow separation. We have reached a high Reynolds

number limit.

With mean flow (u0 6= 0), we have the same answer as for large amplitudes.

o) Flow separation always occurs when the particle displacement is of the order of the diameter of the orifice: u′
d ∼ ωd .

In the pipe we have: u′
D

= u′
d
(d/D)2. The critical level is given by p′ ∼ ρ0c0ωd(d/D)2.

At 10 Hz this corresponds to SPL = 110 dB.

At 100 Hz this corresponds to SPL = 130 dB.

At 1000 Hz this corresponds to SPL = 150 dB.

Within a hearing-aid device, sound is transferred from the amplifier (at the back of the ear) to the ear-drum by means

of a pipe of D = 1 mm. An orifice of d = 0.1 mm placed in this pipe, will protect the ear by limiting sound level

around 1 kHz to SPL = 130 dB. Such devices are indeed in everyday use.

p) In a stationary subsonic free jet induced by a mean flow we expect a uniform pressure. The first intuitive guess for a

quasi-stationary theory is to assume that the inertial effects upstream of the orifice remain unchanged, while the inertial

effects in the jet are negligible. This leads to the common assumption that the end correction of a thin orifice with

a mean flow is at low frequencies half of the end correction in the absence of mean flow. Experiments by Ajello [2]

indicate a much stronger reduction of the end-correction. In some circumstances negative end corrections are found (

Ajello [2], Peters [176]). Indeed the theory for open pipe termination of Rienstra [193] indicates that we cannot predict

end corrections intuitively.

q) R = p−
1
/p+

1
= [A1 − (A2 + A3)]/[A1 + (A2 + A3)].

r) R = p−
1
/p+

1
= [(A1 − A3) cos(kL)− i A2 sin(kL)]/[(A1 − A3) cos(kL)+ i A2 sin(kL)].

R = −1 for kL = π(n + 0.5), R = 0 for A2 = 0 when A1 = A3 and R = 1 for A3 = 0 when kL = nπ

(n = 0, 1, 2, 3, . . . ).

s) p̂+
1

+ p̂−
1

= p̂b + ρwω
2a0â. p̂b/p0 = −3γ â/a0. p̂−

1
= R p̂+

1
.

A( p̂+
1

− p̂−
1
) = A p̂+

2
− (ρwcw)iω4πa2

0
â. p̂+

1
+ p̂−

1
= p̂+

2
.

R = −[1 + i A(ω2 − ω2
0
)/2πωcwa0]−1 with ω2

0
= 3γ p0/ρwa2

0
.

t) p̂b/ p̂in = [1 + ( ωω0
)2(

2π ia0
Ak

− 1)]−1.

u) ω2
0

a2
0
/c2

l
= 3ρl/ρw ≪ 1. At p0 = 1 bar, ρl/ρw = O(10−3).

v) 3γl p0/ρwc2
w = O(10−4) hence a0ω/cw < 10−2.

w) ω2
0

≃ 3γl p0/2ρwa2
0

. R = −[1 + A(ω2 − ω2
0
)/2π iωcwa0]−1.

x) When a0 = O(D) we do not have a radial flow around the bubble. The approximation used for small bubbles fails.

y) [g] = s/m.

z) ω2 ĝ − c2
0

d2

dx2 ĝ = e−iωτ δ(x − y)/2π .

Integration around x = y yields: −[ d
dx

ĝ]y+

y− = e−iωτ /2πc2
0

.

[ d
dx

ĝ]± = ∓ikĝ±. At x = y we have ĝ± = e−iωτ /4π iωc0.
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Hence ĝ± = ĝ±
x=y e∓ik(x−y) with “+” for x > y and “-” for x < y.

Therefore: ĝ = e−iωτ e−ik|x−y| /4π iωc0.

A) Using the result of exercise z) we find:

ĝ+(L |y) = ĝ0(L |y) with ĝ0(x|y) = e−iωτ e−ik|x−y| /4π iωc0.

Furthermore:

ZL

ρ0c0
= ĝ+(L)+ ĝ−(L)

ĝ+(L)− ĝ−(L)
, R = ZL − ρ0c0

ZL + ρ0c0
= ĝ−(L)

ĝ+(L)
.

Hence: ĝ(x|y) = ĝ+ + ĝ− = ĝ0(x|y) + R ĝ0(x|2L − y).

This corresponds to the waves generated by the original source at y and an image source at 2L − y.

B) The same answer as the previous exercise with (section 4.4.5):

R = −1/[1 + A(ω2 − ω2
0
)/(2π iωcwa0)] where A is the pipe cross-sectional area, a0 the bubble radius and ω0 the

Minnaert frequency of the bubble.

C) For |x1 − y1| ≫
√

S| and k2
0

S ≪ 1 the Green’s function is independent of the position (y2, y3) of the source in the

cross section of the pipe. Hence we have: g(x1, t |y1, τ ) =
∫ ∞
−∞

∫ ∞
−∞ G(x, t |y, τ ) dy2dy3 = SG(x, t |y, τ ).

D) Moving the source towards the observer by a distance 1y should induce the same change 1g in g(x, t |y, τ ) as a

displacement 1x = −1y of the observer in the direction of the source. The distance |x − y| is in both cases reduced

by the same amount.

This implies that: 1g = ∂g
∂y1y = − ∂g

∂x1x .

E) p′ ≃ ρ′c2
0

∼ M0
1
2
ρ0U2

0
(d2/S) = 2 × 10−2 Pa. SPL = 60 dB.

F) SPL = 63 dB.

G) (S/a2
0
)(ρwc2

w/3γ p0)
1
2 = 2.3 × 104 or 87 dB. ρwc2

w/3γ p0 = 5.4 × 103 or 75 dB.

H) f ∼ U0/D = 0.1 kHz, ω0/2π = 6.5 kHz.

Chapter 5

a) Z(0) = ρ0c0
(ZL + ρ0c0)+ (ZL − ρ0c0) e−2ik0 L

(ZL + ρ0c0)− (ZL − ρ0c0) e−2ik0 L

For ZL = ∞ we have Z(0) = iρ0c0 cotg(k0L). As Re Z(0) = 0 for ZL = ∞ the piston does in general not generate

any acoustical power unless there is resonance, i.e. k0L = (n + 1
2
)π .

The acoustical field in the pipe is given by: p̂ = p̂+ e−ik0 x + p̂− eik0 x .

The amplitudes p̂+ and p̂− are calculated from the piston velocity û p by using: ρ0c0û p = p̂+ − p̂−, Z(0)û p =
p̂+ + p̂−.

Hence: p̂+ = 1
2
(Z(0)+ ρ0c0)û p , p̂− = 1

2
(Z(0)− ρ0c0)û p .

b) ZL ≃ Z ′
L

+ iρ0ωδ.

c) For x < 0 we have p̂+ = 0 while: p̂− = 1
2
ρ0c0(Sp/S)û p(1 + e−ik0 L ).

The condition that there is no radiation, p̂− = 0, is obtained for: k0L = (2n + 1)π , where n = 0, 1, 2, . . . .

d) p̂ = p̂+ eik0 L + p̂− e−ik0 L ,

with: p̂+ = ρ0c0û p(S + 2Sp)

(S + 2Sp)− (S − 2Sp) e−2ik0 L
, and p̂− = S − 2Sp

S + 2Sp
p̂+.

Flow separation becomes dominant at the junction when:

( p̂+ − p̂−)/ρc2
0

= O(k0
√

S1). The amplitude of the second harmonic p̂1, generated by non-linearities, can be estim-
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ated from:

( p̂1/ p̂+) ∼ k0L( p̂+/ρ0c2
0
).

e) Configuration a): Z p = ρ0c0
(Z1 + ρ0c0)+ (Z1 − ρ0c0) e−2ik0 L

(Z1 + ρ0c0)− (Z1 − ρ0c0) e−2ik0 L
,

where: Z1 = S1 Z2 Z3/(S2Z3 + S3 Z2), Z2 = ρ0c0, Z3 = iρ0c0 tan(k0L).

The system is not a closed resonator because the condition of zero pressure at the junction is never satisfied.

Configuration b): Z p = ρ0c0
(Z1 + ρ0c0)+ (Z1 − ρ0c0) e−2ik0 L

(Z1 + ρ0c0)− (Z1 − ρ0c0) e−2ik0 L
,

where: Z1 = S1 Z2 Z3(0)/(S2Z3(0)+ S3Z2), Z2 = ρ0c0,

Z3(0) = ρ0c0
(Z3(2L)+ ρ0c0)+ (Z3(2L)− ρ0c0) e−2ik0 L

(Z3(2L)+ ρ0c0)− (Z3(2L)− ρ0c0) e−2ik0 L
,

Z3(2L) = S3 Z4 Z5/(S4 Z5 + S5 Z4), Z4 = iρ0c0 cotg(k0L), Z5 = ρ0c0.

The system is in resonance for k0L = (n + 1
2
)π .

Configuration c): Z p = 1
2
ρ0c0i tan(k0L).

The system is resonant for k0L = (n + 1
2
)π .

f) At the mouthpiece we have: ρ0c0û p = p̂+ − p̂−.

If we assume friction losses to be dominant we have: p̂− = p̂+ e−2αL

where: α = 1

D

√
πν

c0L

(
1 + γ − 1√

ν/a

)
≃ 0.027 m−1.

Hence we find: p̂+ ≃ 7.6 × 103 Pa, and p̂ = p̂+ + p̂− ≃ 2 p̂+.

The corresponding fluid particle oscillation amplitude1 at the open pipe termination is:1 ≃ p̂/(ρ0c0ω) ≃ 7×10−2m.

If we assume non-linear losses at the open pipe termination to be dominant we have (equation 5.24) û =
√
( 3

2
π û pc0)

and p̂ ≃ ρ0c0û ≃ 1.6 × 104 Pa. Friction losses and flow separation losses are comparable and the acoustical fluid

particle displacement is of the order of the pipe diameter.

g) p̂+
1

− p̂−
1

= ρ0c0û p , p̂+
1

e−ik0 L1 + p̂−
1

eik0 L1 = p̂+
2

+ p̂−
2

,

( p̂+
1

e−ik0 L1 − p̂−
1

eik0 L1)S1 = ( p̂+
2

− p̂−
2
)S2,

p̂+
2

e−ik0 L2 + p̂−
2

eik0 L2 = p̂+
3

+ p̂−
3

,

( p̂+
2

e−ik0 L2 − p̂−
2

eik0 L2)S2 = ( p̂+
3

− p̂−
3
)S3,

p̂+
3

e−ik0 L3 + p̂−
3

eik0 L3 = 0, ρ0c0ûex = p̂+
3

e−ik0 L3 − p̂−
3

eik0 L3 .

h) p̂ = A cos(kx) for x < L , while p̂ = B e−ikx for x > L . Suitable dimensionless groups are z = kL , α = cM L/c0a,

λ = ρ0L/σ , where the propagation speed of transversal waves in the membrane cM =
√

T/σ is introduced. The

resonance equation is then

(z − 8α2z−1) sin z = λ eiz .

λ → 0 when the air density becomes negligible or when the membrane becomes very heavy. In that case we have the

membrane-in-vacuum vibration z ≃ α
√

8+. . . and the closed pipe modes z ≃ nπ+ λ
nπ−8α2/nπ

+. . . (n = 1, 2, 3, ..).

So when λ = 0 (no energy is radiated) there are indeed undamped solutions with Im(z) = Im(ω) = 0.

i) m = ρ0Sn(ℓ+ 2δ), K = ρ0c2
0

S2
n/V .

j) p̂in = i ωρ0(ℓ+ 2δ)Q̂

Sn

(
1 − ω2

ω2
0

) .
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k)
p̂transmitted

ρ0c0û p
=

2(1 − ω2/ω2
0
)− (iωV/c0 S)

[2(1 − ω2/ω2
0
)− (iωV/c0S)] eik0 L −(iωV/c0 S) e−ik0 L

.

There is no transmission when both ω = ω0 and k0L = (n + 1
2
)π .

l) Transmission and reflection coefficient:

T =
p̂+

2

p̂+
1

= 1

(1 + ik0ℓSp/Sd)[1 − (ω2/ω2
0
)+ (ik0V/2Sp)]

,

R =
p̂−

1

p̂+
1

= T +
(ik0ℓSp/Sn)− 1

(ik0ℓSp/Sn)+ 1
,

where: ω2
0

= c2
0

2Sd/(ℓV ), and: ℓ ≃ 1.6
√

Sd/π ≃
√

Sd .

m) T = 2
(

2 − iωρwcw

Sp(γ p0/V )(1 − ω2/ω2
0
)

)−1
, R = T − 1, ω2

0 =
(γ p0

V

)( S

ρwℓ

)
.

n) An energy balance yields: 1
2

p̂in Q̂ = 2
3π
ρ0û3Sn , where we assumed that p̂in and Q̂ are in phase and that vortex

shedding at the neck can be described by means of a quasi-stationary model. The internal pressure p̂in is related to the

acoustical velocity û through the neck by the momentum conservation law: p̂in = ρ0iωℓû.

This yields: û =
√
(3πωℓQ̂/4Sn) which is a factor

√
(2Snk0ℓ/Sp) smaller than for a 1

4
λ open pipe resonator.

o)
p̂in

p̂ex
= 1 + ω0

ω1

u0 − c0

u0
+ i

(
1 +

ω2
0

ω2
1

)
, with ω2

0
= c2

0
Sn/(ℓV ) and ω1 = c0/ℓ.

p) As there are no sources q = 0, we have:

ρ′(x, t) = −c2
0

t∫

−∞

[
ρ′(y, τ )

∂ga

∂yi
− ga(x, t |y, τ )ρ

′(y, τ )
∂yi

]
y=0

ni dτ ,

where ga(x, t |y, τ ) =
∫∫

S

G(x, t |y, τ ) dS( y).

Other contributions from the surface integral vanish if we assume that G has the same boundary conditions as the

acoustic field on these surfaces. At y = 0 we have (∂ga/∂yi )ni = 0. Furthermore we have: ρ0
∂
∂τ u′ = −c2

0
∂
∂yρ

′, and

n1 = −1 at y = 0, which yields: p′ = c2
0
ρ′ = ρ0c2

0

∫ t
−∞ ga(x, t |y, τ ) ∂

∂τ
u′ dτ . The final result is obtained by partial

integration.

q) f ≃ c0/(2L), û/(ωw) ≃ 1 m/s. p̂ ≃ ρ0c0û ≃ 4 × 102 Pa.

The ratio of acoustical particle displacement to pipe diameter is w/D = 2 × 10−2. We expect vortex shedding at the

pipe ends to be a minor effect in a Rijke tube.

r) Using an energy balance between sound production and dissipation by vortex shedding we have: 0.05 1
2
ρ0u2

0
û B×w ≃

ρ0û3 B×w, or:

|û| ≃ 0.22u0.

The hydrodynamic resonance condition fw/u0 ≃ 0.4 combined with the acoustic resonance condition 2π f =
c0

√
(wB/ℓV ) and the order of magnitude estimate ℓ ∼ 2

√
(Bw/π) = 0.44 m yields: f ≃ 18.5 Hz and u0 ≃ 14 m/s

= 50 km/h, | p̂| = ρωℓ|û| ≃ 43 Pa.

For a slit-like orifice we have ℓ ∼ w.

s) The blowing pressure p0 is a fair estimate. When p̂ reaches p0 the flow velocity through the reed vanishes at high

pressures, which provides a non-linear amplitude saturation mechanism.
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Chapter 6

a) The fluid pushed ahead of the sphere in the direction of the translation can be considered as generated by a source. The

fluid sucked by the rear of the sphere corresponds to the sink.

b) Qualitatively we find that the streamlines as observed in the reference frame moving with the vortex ring are very

similar to those generated by a dipole or a translating sphere.

Quantitatively the circulation Ŵ =
∮
v · dℓ of the vortex corresponds to a discontinuity 1φ of the flow potential across

a surface sustained by the vortex ring. Such a discontinuity can be generated by a dipole layer on this surface which

replaces the vortex ring [reference Prandtl]. Assuming the dipole layer to consist out of a layer of sources at the front

separated by a distance δ from a layer of sources at the rear, the potential difference is given by 1φ = uδ. The velocity

u is the flow velocity between the two surfaces forming the dipole layer. Taking the projection S of the surface on a

plane normal to the direction of propagation of the vortex ring, we can represent in first approximation the dipole layer

by a single dipole of strength uSδ placed at the center of the ring and directed in the direction of propagation of the

vortex ring.

c) Electromagnetic waves are transversal to the direction of propagation like shear-waves. Acoustical waves are compres-

sion waves and hence longitudinal.

d) R = (ρaircair − ρwatercwater)/(ρaircair + ρwatercwater), ρaircair = 4 × 102 kg/m2 s,

ρwatercwater = 1.5 × 106 kg/m2 s, 1 + R = 10−4.

e) A dipole placed normal to a hard wall will radiate as a quadrupole because the image dipole is opposite to the original

dipole. A dipole placed parallel to a hard wall will radiate as a dipole of double strength because the image has the

same sign as the original.

f) The radiated power increases by a factor two because the intensity is four times the original intensity but the radiation

is limited to a half space.

g) The first transverse mode of the duct has a pressure node in the middle of the duct. Hence a volume source placed on

the axis of the duct experiences a zero impedance for this first mode. It cannot transfer energy to this mode.

h) The vanishing acoustic pressure at the water surface p′ = 0 precludes any plane wave propagation. The first propagat-

ing mode has a cut-on frequency fc = 1
4

c0/h corresponding to a quarter wave length resonance.

i) A dipole placed normal to the duct axis will not radiate at frequencies below the cut-off frequency of the first transverse

mode in a duct with hard walls. This is explained by the destructive interference of the images of the dipole in the

direction of the axis. On the other hand, however, when placed along the axis the dipole will very efficiently radiate

plane waves at low frequencies. The amplitude of these waves are: | p̂| = ωρ0 Q̂δ/S.

j) Assume that the quadrupole is approximated by two dipoles (1 and 2), one very close to the surface of the cylinder

(r1 ≃ R) and one far away (r2 ≫ R). If the dipoles are directed radially, the dipole at the surface forms a quadrupole

with its image (r ′
1

= R2/r1 ≃ R), while the image of the other dipole is very close (r ′
2

= R2/r2 ≪ R) to the axis of

the cylinder and very weak. The distance between the source and sink forming the second dipole is reduced by a factor

(R2/r2
2
) while the strength of each image is equal to that of the original source. As a result the dipole far away from

the cylinder radiates independently of the dipole close to the cylinder.

A very similar behaviour is found when the dipoles forming the quadrupole are normal to the radius of the cylinder (in

tangential direction). Then the radiation of the dipole close to the surface is enhanced by a factor two, while that of the

other dipole is not affected.

k) Equal thrust implies: ρ1u2
1

D2
1

= ρ2u2
2

D2
2

. If ρ1 = ρ2 we have u1 D1 = u2 D2. Assuming subsonic free cold jets we

have: I ∼ u8 D2 = (u D)8/D6. Hence: I1/I2 = D6
2
/D6

1
= 26 or a difference of 36 dB.

In practice a low sound production does also correspond to a lower power 1
2
ρu3 D2 ∼ (u D)3/D. The introduction

of high bypass jet engines was aimed to reduce the propulsion costs, but it appeared to be also a very efficient noise

reduction method.
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l) As the compressibility of an ideal gas is determined by the mean pressure there appears to be no monopole sound

production upon mixing of a hot jet with a cold gas environment with equal specific-heat ratio γ . The sound is produced

[144, 164] by the difference in acceleration between neighbouring particles experiencing the same pressure gradient

but having different densities. This corresponds to a force in terms of the analogy of Lighthill and a dipole source of

sound. Therefore the radiation scales in a subsonic case at I ∼ M6.

m) The large contrast in compressibility K between the bubbly liquid and the surrounding water results into a monopole

type source (fluctuating volume). This corresponds to a scaling rule I ∼ M4.

n) This effect is not significant in subsonic free jets.

o) The characteristic frequency for turbulence in a free jet with circular cross section is u0/D which implies that: D/λ =
D f/c ∼ u0/c0. Hence a subsonic free jet is a compact flow region with respect to sound production by turbulence.

Note: for a free jet with a rectangular cross section w × h and w ≫ h the characteristic frequency of the turbulence is

0.03u0/h.

p) Using Curle’s formula:

ρ′ =
xi x j

4π |x|3c4
0

∂2

∂t2

∫∫∫

V

Ti j

(
y, t − |x|

c0

)
d y +

x j

4π |x|2c3
0

∂

∂t
F j

(
t − |x|

c0

)

and ∂
∂t

∼ u0/D, Ti j ∼ ρ0u2
0
, F j ∼ ρ0u2

0
d D, and V ∼ D3, we obtain:

ρ′ ∼
ρ0u3

0
D

4π |x|c3
0

(u0

c0
+ d

D

)
.

The cylinder induces an enhancement of turbulence sound production by a factor (1 + dc0/Du0). Blowing on a finger

we indeed observe a significantly larger sound production than blowing without finger.

q) Sound production due to volume fluctuations V ′ of the bubble is given by:

ρ′ = (4π |x|c2
water)

−1(∂2/t2)V ′, where, assuming isentropic oscillations of the bubble of initial volume V0 = 4πa3
0
/3

at p0, we have: V ′/V0 = −p′/γair p0. The typical pressure fluctuations in a free jet are of the order p′ ∼ ρwu2
0
.

Assuming ∂/∂t ∼ u0/D we find

ρ′

ρwater
∼ D

4π |x|
u4

0

c4
water

a3
0

D3

ρwaterc2
water

p0
.

The enhancement in sound production, when compared to no bubbles, is by a factor (1 + (a0/D)3(ρwaterc2
water/p0)).

Since ρwaterc2
water/p0 = O(104), even a small bubble will already enhance the sound production considerably.

r) With a single blade the sound production as a result of the tangential component of the lift force (in the plane of the

rotor) scales as: ρ′/ρ0 ∼ CL D(k0 R)3/8π |x|. The sound produced by the axial component is a factor u0/c0 weaker.

With two opposite blades, the lift forces in tangential direction form a quadrupole which result into a factor k0 R

weaker sound radiation than in the case of the single blade. The sound production in a ventilator is actually dominated

by non-ideal behaviour such as the non-uniformity of the incoming flow.

s) In a hard walled duct an ideal low speed axial ventilator will not produce any sound. The effect of the tangential

forces is compensated by images in the walls while the pressure difference 1p induced by the axial force is constant.

Non-uniformity of the incoming flow will induce fluctuations in the pressure difference 1p which are very efficiently

radiated away. Especially the supports of the ventilators are to be placed downstream of the fan. Further sources of

flow non-uniformity are the air intake or bends.

t) The sound production will be dominated by the interaction of the rotor blades with the thin wake of the wing. The

resulting abrupt changes in lift force on the blades of the rotor induce both radial and axial sound radiation. The thinner

the waker the higher the generated frequencies. As the ear is quite sensitive to relatively high frequencies an increase

of the wake thickness can result into a significant reduction of noise (dBA).
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u) The tip Mach number ωR/c0 = k0 R is of order unity. The rotor is therefore not compact at the rotation frequency, and

certainly not at the higher harmonics.

v) The dominant contribution is from the unsteady force, given by CD
1
2
ρ0u2

0
, on the body. This results into a sound

production scaling as (u0/c0)
3 (see Curle’s formula).

w) ZL = ρ0c0
1
4
(k0a)2, Z p = ρ0c0

(ZL + ρ0c0)+ (ZL − ρ0c0) e−2ik0 L

(ZL + ρ0c0)− (ZL − ρ0c0) e−2ik0 L
.

x) 〈I 〉 = 1
4
[ p̂∗û + p̂û∗] = 1

2
Re(Z p)|û|2, and 〈W 〉 = πa2〈I 〉.

At resonance k0L = (n + 1
2
)π we find: Z p = ρ0c0(ρ0c0/ZL )

(see previous exercise). This corresponds to an enhancement

Z p/ZL = [4/(k0a)2]2 of the radiated power.

y) p̂r = A+ e−ik0r +A− eik0 L , iωρ0ûr = p̂ + ik0[A+ e−ik0r −A− eik0 L ].
(r1/r2)

2 = S1/S2 and r1 = r2 − L , so r2 = L/(1 −
√

S1/S2).

A+ = ρ0c0û pr1/
{
[1 − i/(k0r1)] e−ik0r1 −R[1 + i/(k0r1)] eik0r1

}

R = A−

A+ = −
1 − 1

4
(k0a2)

2[1 − i/(k0r2)]
1 − 1

4
(k0a2)

2[1 + i/(k0r2)]
e−2ik0r2

z) Except for the highest frequencies, there is no radiation into free-space. Hence the size of the loudspeaker compared

to the acoustical wave-length is not relevant for the sound transfer from loudspeaker to eardrum. The Walkman loud-

speaker acts almost directly onto the eardrum.

A) Friction losses are given by: (1 − | p̂−/ p̂+|) f = 1 − e−2αL ≃ 2αL , where α can be calculated by using the formula

of Kirchhoff. The friction is proportional to
√
ω.

Radiation losses are given by: (1 − | p̂−/ p̂+|)r = 1
2
(k0a)2, and are proportional to ω2. Using the results of exercise

(5.f) we find

for f0 : (1 − | p̂−/ p̂+|) f = 5 · 10−2, (1 − | p̂−/ p̂+|)r = 1.2 · 10−4;

for f1 = 3 f0 : (1 − | p̂−/ p̂+|) f = 9 · 10−2, (1 − | p̂−/ p̂+|)r = 1 · 10−3;

for f2 = 5 f0 : (1 − | p̂−/ p̂+|) f = 1.2 · 10−1, (1 − | p̂−/ p̂+|)r = 3 · 10−3.

In a flute of the same size as a clarinet the radiation losses are increased by a factor eight (two radiation holes and twice

the fundamental frequency). The friction losses increase by a factor
√

2 due to the higher frequency.

B) Assuming a perfectly reflecting ground surface, the energy is distributed over a semi-sphere: I = Wr /(2πr2). As

Imin = 10−12 W/m2, we find for Wr = 5 × 10−5 W that r ≃ 4 km.

C) In free space the bubble experiences the impedance of a compact sphere:

Re(Z) = ρwatercwater(k0a0)
2. In a pipe we have: Re(Z) = ρwatercwater 8πa2

0
/S.

D) As the twin pipes oscillate in opposite phase the radiation has a dipole character and is a factor (k02a)2 weaker than

for an individual pipe. Such systems are therefore acoustically almost closed. In a duct a wall placed along the duct

axis can form such a system of twin pipes if it is longer than the duct width. In such a case the oscillation of the system

is called a Parker mode and does not radiate because the oscillation frequency is below the cut-off frequency for the

first transverse mode. In fact the twin pipes forms with its images an infinite row of pipes. In a similar way such modes

can occur in rotors or stators of turbines. This kind of oscillations have been reported by Spruyt [227] for grids placed

in front of ventilators.

Chapter 7

a) (i) kca = 2π fca/c0 = j ′
11

= 1.84118, so fc = 996.3 Hz.
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(ii) k11 = −15.93 i, so 20 log10 | e−ik11 D | = −20|k11|D log10 e =
−138.3D = −20, and D = 14.5 cm.

(iii) k11 = −18.4 i, so D = 12.5 cm.

b) Since σmµa → ∞, Im/I ′
m → 1 and αmµ = iσmµ ≃ −ikρ0c0/X .

For r ≃ a

Jm(αmµr)

Jm(αmµa)
e−ikmµx ≃

(a

r

)1/2
e−σmµ(a−r) e

−i
√

k2+σ 2
mµx

.

c) A simple point mass source Qδ(x − x0) eiωt , where we take x0 = 0, ϑ0 = 0, gives rise to the equation

∇2 p + k2 p = −iωQδ(x)
1

r0
δ(r − r0)

∞∑

m=−∞
δ(ϑ − 2πm)

with solution

p(x, t, ϑ) = ωQ

4π

∞∑

m=−∞

∞∑

µ=1

Jm(αmµr0)Jm(αmµr) e−ikmµ|x |−imϑ

1
2
(a2 − m2/α2

mµ)Jm(αmµa)2kmµ

.

d) F(α, Z) = iωρ0 Jm(αR)+ αZ J ′
m(αR) = 0, from which it immediately follows that Z , and hence Zopt, is of the form

ρ0ωRKm with Km = Jm(αR)/iαR J ′
m(αR). From ∂

∂α
F(α, Z) = 0 it follows that αR =: z is a (non-zero) solution of

z J ′
m(z)+ i(z2 − m2)

1
2 Jm(z) = 0, while Km = (z2 − m2)−

1
2 . Note that we take the sign of the square root that yields

Re(Z) > 0.

A numerical zero-search reveals that K0 = 0.28330−0.12163i, K1 = 0.20487−0.07049i, K2 = 0.16628−0.05133i.

Chapter 8

a) Since A(x) = πa2 e2mx , we have p(x) = p̂0 e−i
√

k2−m2 x−mx .

b) Since k1 = |k|(R − h)/R and α = −q we have

R =
∣∣∣∣
ω

αk1ε

∣∣∣∣ = ωR

q|k|(R − h)ε
= R(1 − εh)

(R − h)ε
.

It follows that R = ε−1 = 250 m. and so the largest distance is 2
√

2Rh − h2 = 54.7 m.

d) Replace cos(�τ) and sin(�τ) by ei�τ and −i ei�τ , express u′
n in y. Then it follows that

Z = 1

σ

[
R + iρ0ℓω − iρ0c2

0

Sn

Vω

]
.

Chapter 9

a) With the propeller in vane position (no angle of attack) the lift force as defined in (9.26) is directed in z-direction only,

and Me = MR . Using the results of section 9.3 we find

p(x, t) ≃ −
f0 M2

R
sin θ cos θ cos(φ − ωt + kr)

4πar(1 − MR sin θ cos(φ − ωt + kr))3
.

The radiation pattern has zeros in the directions θ = 0◦, 90◦, and 180◦, while it has its main directions of radiation in

(near) the conical surfaces θ = 45◦ and 135◦.

b) R = a, R = a, so te = t − a/c0, and R·M = Ma cos α, and

4πp(x, t) = ρ0Q′
e

a(1 − M cos α)2
+ρ0 QeV

cos α − M

a2(1 − M cos α)3
= 1

a2(1 − M cos α2)

( a·F′
e

c0
−M ·Fe

)
+ (1 − M2)(a·Fe)

a3(1 − M cos α)3
.
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